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ABSTRACT

The direction-adaptive discrete wavelet transform (DADWT)
proves to be a very competitive alternative in scalable wavelet-based
compression of images, yielding impressive compression perfor-
mance gains in comparison to the classical DWT. A major limitation
of DADWT though stems from its complexity, requiring an exhaus-
tive search for the optimum prediction direction to be employed
in the directional lifting process. This paper proposes a novel al-
gorithm to lower the complexity of the DADWT by predicting the
optimal prediction direction using a gradient-based technique. The
algorithm is developed based on a mathematical model of the pre-
diction errors generated via directional lifting of an input wedge
image. The proposed approach avoids a time-consuming exhaustive
search and yet the prediction step remains very simple and fast. It
is shown that the proposed algorithm brings a complexity-reduction
factor of 11/4 for almost no penalty in the prediction accuracy.

1. INTRODUCTION

The use of the wavelet transform in scalable compression of im-
ages became popular in the past years, in particular with the advent
of the JPEG-2000 image compression standard, offering state-of-
the-art compression performance and enabling a rich set of func-
tionalities, such as resolution and quality scalability, and region-of-
interest coding. Despite of their undoubted success, wavelets in two
dimensions (2-D) are typically obtained by a tensor-product of one-
dimensional wavelets. Hence, they are adapted only to point sin-
gularities and cannot efficiently capture higher-order singularities,
like curvilinear singularities, which are abundant in images.

In order to boost the compression performance in nowadays ap-
plications, new transforms capable of capturing and exploiting the
geometric information present in images need to be used, as pro-
posed in [1]-[9]. Among such transforms, the direction-adaptive
discrete wavelet transform proposed in [1] has proven to be highly
efficient in scalable compression of images, significantly outper-
forming its non-directional DWT equivalent [1], [2]. DADWT re-
tains the advantages of being critically-sampled and synthesized via
lifting, and in the same time, it adapts itself to the local geometric
features in images by operating on rectangular blocks [1] or seg-
ments [2] in the input image, and by making use of directional lift-
ing within each such block or segment. The disadvantage compared
to the non-directional DWT resides in its increased complexity. In-
deed, the best prediction direction to be employed in each block or
image segment is selected by searching exhaustively from a discrete
set of possible directions, and by retaining the direction that mini-
mizes a certain distortion-rate cost [1]. Compared to the classical
DWT, this exhaustive-search procedure linearly increases the com-
plexity of the DADWT with a factor that is proportional to the total
number of considered prediction directions.

In this paper a solution to this problem is proposed, wherein the
selection of the best prediction direction is determined by using a
gradient-based technique. The advantage of the proposed technique
is a significant reduction in the DADWT complexity, while bring-
ing almost no penalty in the prediction accuracy compared to an
exhaustive search for the optimal direction.

The remainder of this paper is structured as follows. Section
2 gives an introduction to the direction-adaptive discrete wavelet
transform. Section 3 discusses the theoretical model which will
be the building block for the proposed gradient-based selection of
prediction direction. Section 4 then uses the considered model
to construct the algorithm. The proposed algorithm is tested and
compared against an exhaustive-search approach, and the results of
these tests are discussed in section 5. Finally, the conclusions of our
work are drawn in section 6.

2. DIRECTION-ADAPTIVE DISCRETE WAVELET
TRANSFORM (DADWT)

The DADWT proposed in [1] is a critically-sampled discrete
wavelet transform implemented with lifting [3], in which the lifting
operations are adapted to the local geometry in the image. Basically,
in the approach of [1] the image is split into blocks, and within each
block a direction-adaptive discrete wavelet transform is performed
by employing a “directional” lifting scheme.

Following the notations in [1], let s = {s[l]|l ∈Π}, where s[l] =
s[lx, ly] and l = (lx, ly), denote a set of image samples on a 2-D or-
thogonal sampling grid Π = {(lx, ly)∈Z2}. The grid Π is composed
of 4 sub-grids: Πpq = {(lx, ly) ∈Π|lx mod 2 = p, ly mod 2 = q}.

Similar to the classical DWT, the input signal s is firstly de-
composed into even (s0 = {s[l0]|l0 ∈Π0 = Π00

⋃
Π01}) and odd

(s1 = {s[l1]|l1 ∈Π1 = Π10
⋃

Π11}) rows respectively. Then, the
lifting scheme predicts the even rows from the odd ones, resulting
into the detail signal w1 = {w1[l1], l1 ∈Π1}. This signal is used to
update the even rows in order to produce the approximation signal
w0 = {w0[l0], l0 ∈Π0}. The 1D vertical lifting steps are thus:

w1[l1] = gH ·
(
s[l1]−Ps,l1 (s0)

)
,∀l1 ∈Π1 (1)

w0[l0] = gL ·
(

s[l0]+g−1
H ·Us,l0 (w1)

)
,∀l0 ∈Π0 (2)

where gH ,gL are scaling factors and P(·),U(·) are predict and up-
date functions respectively, taking as input set of samples in s0, and
w1 respectively, and producing a scalar output.

A subsequent lifting step performed on columns decomposes
w0 = L into the subbands w00 = LL and w01 = LH defined on
the grids Π00 and Π01 respectively and w1 = H into the subbands
w10 = HL and w11 = HH defined on Π10 and Π11, respectively.

The DADWT employs Nc candidate directional predictors
Pi

s,l1(·) for each block. The directional predict and update functions
with direction d = (dx,dy) are defined as [1]:

Pi
s,l1(s0) =

KP−1

∑
k=−KP

cP,k · s[l1− (2k +1)d]

Us,l0(w1) =
KU−1

∑
k=−KU

cU,k · ∑
{l1|l1−(2k+1)d∗l1 =l0}

w1[l1]

where i = 0 · · ·Nc−1 is the direction index, Nc is the number of pre-
diction directions, KP,cP,k,KU ,cU,k are determined by the wavelet
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kernel adopted, and d is defined such that:

l1− (2k +1)d ∈Π0,∀l1 ∈Π1,k =−KP, · · · ,KP−1

The d∗l1 in the update function denotes the direction selected at lo-
cation l1 for Ps,l1(s0).

For compression purposes, it is desirable to select for each
block the predictor for which the magnitude of the residual w1[l1] is
minimized. Thus, for every image block, the optimum direction d
is chosen as the direction that minimizes the prediction error w1[l1]
[2], or a certain distortion-rate cost, involving the prediction accu-
racy and the cost of encoding the prediction directions [1]. Once a
prediction direction is chosen, the “flow” vectors d are reverted and
used in the update step, as given above.

For a multi-level wavelet transform, the vertical and horizon-
tal directional lifting steps are repeated successively for every LL.
The inverse transform reconstructs the original signal performing
the same steps in reverse order.

3. THEORETICAL MODEL

Despite of its advantages, a major limitation of directional lifting is
the complexity associated with the selection of the optimal direc-
tion in the directional lifting step. Current practice in [1], [2] is to
exhaustively search among all the possible candidate directions d,
and, for each block or image segment, select the one that optimizes
a certain cost function. This indicates that, in comparison to a clas-
sical DWT, the complexity of DADWT increases with a factor that
is proportional to the total number of candidate directions Nc.

In order to reduce complexity, it is necessary to develop an algo-
rithm that enables the prediction of the optimal prediction direction
for each block or image segment. If this might not always be practi-
cally feasible, such an algorithm should allow at least for identifying
a sub-set of probable directions among all the possible Nc candidate
prediction directions. In order to design such an algorithm, we will
assume a certain input image model, and based on this model, derive
the prediction errors generated via directional lifting in function of
the selected directions. This mathematical model is presented next.

3.1 Modeling prediction errors
For simplicity, let us assume that directional lifting operates on rect-
angular blocks in the input image as in [1], and that any such block
is modeled using a so called wedge model, as depicted in the exam-
ple of figure 1.

Figure 1: Wedge input image model.

The input wedge signal s, forming a certain angle θ with the
horizontal axis, can be formally expressed based on the Bresenham
algorithm as [4]:

s(x,y) =

{
A y 6 round

(
y0 +(y1− y0) · x0−x

x0−x1

)
B otherwise

(3)

where (x0,y0) is the starting point of the wedge on the left border,
(x1,y1) is the end point, and the point (0,0) lays in the upper left
corner in the image block. The equation above is used in case |∆x|=
|x1− x0|> |∆y|= |y1− y0|. In all other cases, one should use:

s(x,y) =

{
A x 6 round

(
x1 +(y1− y) · x0−x1

y1−y0

)
B otherwise

(4)

Let us now calculate the prediction error produced by direc-
tional lifting operating on lines parallel to the wedge. In this case, a
parallel line must be interpreted as a line, starting in (x0± r,y0),r >
0 oriented at the same angle θ and parametrized the same way as
the original wedge (see equations 3 and 4).

Let us now calculate the prediction error for a point where
s(x,y) = A, lying on a parallel line at a distance r from the wedge.
If all samples used in the prediction step lay in the region where
s(x,y) = A, the prediction error will be equal to zero. On the other
hand, if the prediction function overlaps the wedge, the prediction
error will not be equal to zero anymore. In order to identify these
situations, we divide the set of possible values of k (see equation 2)
into two subsets S1 and S2; if |∆x|> |∆y| these are expressed by:

k ∈ S1⇔−(2 · k +1) ·dx > r

and − (2 · k +1) ·dy > round
(

y0 +
(y1− y0)
(x0− x1)

· r
)

k ∈ S2⇔−(2 · k +1) ·dx 6 r

or − (2 · k +1) ·dy 6 round
(

y0 +
(y1− y0)
(x0− x1)

· r
)

For every value of k∈ S1 the corresponding sample comes out of the
region where s(x,y) = B and therefore an error is made. Taking all
this into account, one can analytically express the prediction error
on (x,y) as:

PE(x,y) = f (r,θ ,x0,y0,d,KP) (5)

= A−

(
∑

k∈S2

cP,k ·A+ ∑
k∈S1

cP,k ·B

)
(6)

where s(x,y) = A. The same can be done for points (x,y) where
s(x,y) = B and/or |∆y|> |∆x|.

The conditions to classify k in S1 or S2 can also be expressed
by using vector notations. Specifically, the prediction error in the
upper part of the wedge (i.e. where s(x,y) = A) is given by:

PE(x,y) =

 A−
(

∑
l−1
k=−Kp

cPk ·A+∑
Kp−1
k=l cPk ·B

)
l > 0

A−
(

∑
l
k=−KP

cPk ·B+∑
Kp−1
k=l+1 cPk ·A

)
l < 0

(7)
For the lower part of the wedge (i.e. where s(x,y) = B), the predic-
tion error is given by:

PE(x,y) =

 B−
(

∑
l−1
k=−Kp

cPk ·B+∑
Kp−1
k=l cPk ·A

)
l > 0

B−
(

∑
l
k=−KP

cPk ·A+∑
Kp−1
k=l+1 cPk ·B

)
l < 0

(8)
In both of the above equations l is derived out of:

(2 · [sign(l)(|l|−1)]+1) · ~d < (~r · ~d) ·~1d 6 (2l +1) · ~d (9)

Equation (9) simply measures the distance between a line, starting
in (x0−r,y0) and parallel to the wedge, and the wedge. The distance
is measured in the direction of ~d. Once one knows this distance, it
is sufficient to compare it against the distance to the samples used in
the prediction. If the latter is greater than the distance to the wedge,
an error is made, contributing to the total prediction error.

Equation (9) can be rewritten as:

(2 · [sign(l)(|l|−1)]+1) <
rx ·dx√
d2

x +d2
y

6 (2l +1) (10)

where l is also limited to the interval [−KP,KP +1]. From this, we
derive that:

l = sign(m) ·min{|m|, |KP|} (11)
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where:

m = sign

1
2

 rx ·dx√
d2

x +d2
y

−1

 · ceil

∣∣∣∣∣∣12
 rx ·dx√

d2
x +d2

y

−1

∣∣∣∣∣∣


These equations indicate that the prediction error is constant
for all the points (x,y) lying at a distance l from the wedge. That
is, these equations indicate the existence of zones, parallel to the
wedge, with a constant prediction error. In practice, this happens
indeed, as one can notice from the example depicted in figure 2a.

We point out that this prediction error model does not take into
account the existence of border effects at the block boundaries. At
the borders of the image, certain samples, used in equation 2 sim-
ply do not exist. Therefore the image needs to be symmetrically
extended around the borders, this inherently causing border effects.
These effects can be recognized as an interruption in the parallel
zones, as depicted in the example shown in figure 2b.

(a) (b)

Figure 2: Predicted values after one 1D transform. (a) Zoom on the
different parallel zones around the wedge. (b) Border effects in the
right upper corner (the actual gray-scale values are replaced with
pseudo-colored values in order to emphasize the border effects).

The width of the different zones, and therefore the number of
samples where a prediction error is made, depends on the direction
~d = (dx,dy). After all, an error is made only if the distance rx be-
tween the wedge and the line under consideration measured in the
direction of ~d is small. By adjusting the direction of ~d, this distance
will vary. One should try to choose ~d parallel with the wedge. In
that particular case, the “measured distance” becomes infinity and
no error is made, that is, the prediction error is equal to zero.

In the next part of this section the theoretical model will be
used to generate some theoretical histograms of the prediction er-
rors. These can then be compared with the real histograms, to verify
the accuracy of the model.

3.2 Histograms
In order to model the histogram of the prediction errors, it is still
necessary to determine the number of points in every zone with a
constant prediction error.

For ease in the calculations, the wedge will be approximated by
a straight line. A zone is then reduced to a set of lines, all parallel
with the wedge and the number of samples per line equals the norm
of that line. By doing this, it is sufficient to calculate the prediction
error in only one point of every zone, and the number of points in
that zone. The calculation of the prediction error can be easily done
by using the formulas derived in section 3.1 .

To model the number of points in a zone, let us first calculate
the number of lines in a zone. It is sufficient to check how many
values of rx ∈ Z exist for a certain prediction value. To do so, one
starts from equation (10). Then the maximum variation allowed for
rx is given by:

|∆rx,max|= f loor

2 ·

√
d2

x +d2
y

|dx|

 (12)

and this is also the number of rows with a certain value of the pre-
diction error in one region.

The number of samples in a line will be proportional to the
length of the line (even if the Bresenham’s algorithm is used). The
starting point of the parallel line is (x0 +r,y0 = 1) = (v0,w0) and the
end-point (v1,w1) can be calculated using simple geometry, which
allows for the theoretical calculation of the histogram of the predic-
tion errors and the comparison to the actual histogram. An example
is shown in figure 3, where the x-axis indicates the prediction error
(varying between -255 and 255) and on the y-axis shows the number
of times this error is found in the picture.

Figure 3: Theoretical and actual histograms.

The theoretical values of the errors match the ones found in
practice, corresponding to a perfect vertical alignment of the the-
oretical and actual histogram points in the figure. The number of
times they occur differ a bit, which can be explained by the approx-
imations made in the model.

4. PROPOSED ALGORITHM

The mathematical model, derived in the previous section, has
learned us that for a wedge image the best prediction direction is
the one that is parallel to the wedge. If we would know the di-
rection of the wedge, it would be easy to select the best prediction
direction out of a limited set of directions.

In order to find the direction of the wedge, a simple choice is to
employ a gradient-based algorithm. Basically, we can calculate the
gradient magnitude and orientation in every point; based on this, the
wedge direction can be found as the direction that is perpendicular
to the direction of the gradient with the largest magnitude. This will
be referred to as the magnitude-based approach further on.

Another possibility would be to compute a histogram of gra-
dient orientations for each image block or segment, and take the
dominant gradient direction as being the peak in the histogram. The
direction employed in directional lifting can then be the perpendic-
ular to the dominant gradient direction. This will be referred to as
the histogram-based approach in section 5.

In order to obtain a reliable estimate of the dominant gradient-
direction many algorithms are available and could be used. In our
approach, we opt for a computationally inexpensive approach to
compute gradients, and this is the Sobel operator. Although it is
well known that this operator is noise sensitive, its choice proves to
be sufficient for the purpose of our algorithm.

To assess the performance of our algorithm, the following ex-
periment has been carried out: 100 wedge images were constructed,
where the angle of the wedge varied between π/2 and −π/2. On
every image the best direction was determined by an exhaustive
search and by using our algorithm. Both directions are compared
and plotted in figure 4 where the color indicates the number of times
a certain couple of directions occurred in the experiment. If the es-
timation of the best direction would work perfectly, the plot would
only show values on the first bisection.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Figure 4: Estimated direction (y-axis) versus the best direction ob-
tained via exhaustive search (x-axis).

Unfortunately, figure 4 indicates that in a lot of cases the es-
timated direction and the best direction are different. The reason
is that the calculated gradient direction needs to be mapped to a
discrete set of values, corresponding to the Nc candidate prediction
directions. This discretization process, coupled with the potential
inaccuracies brought by the use of the Sobel operator do explain
the imprecision of the algorithm. This problem can be overcome if
one is prepared to sacrifice a part of the gains one made in reducing
the DADWT complexity. Specifically, instead of blindly consider-
ing only the estimated direction, it could be better to compare the
estimated direction with the two adjacent directions, and retain the
best of the three. This requires the calculation of three directional
transforms instead of one, but this is still a lot better than calculating
the transform for the whole set of directions (in the experiments de-
scribed in [1], [2] this set contains 11 directions). The results of this
approach, shown in figure 5, are clearly better than those obtained
with only one direction. We note also that using 5 directions did
not significantly improve the results while the complexity needed
to calculate the transform increased from 3/11 to 5/11 of the orig-
inal DADWT complexity (if we neglect the complexity associated
with the gradient computations).

Figure 5: Estimated prediction direction when 3 directions are com-
puted (y-axis) versus the best direction obtained via an exhaustive
search (x-axis).

The same experiment can be repeated for images corrupted by
noise. In this experiment Gaussian noise is applied, the results being
shown in figure 6. It can be clearly seen that for low noise levels the
algorithm still performs properly, despite of the well-known noise
sensitivity of the Sobel operator. For high noise-levels the results
are rather poor; it is clear that a denoising step is needed before
calculating the dominant gradient direction, or a better gradient es-
timator should be employed, such as Canny.

(a) Low level of noise (b) High level of noise

Figure 6: Estimated direction using the Sobel operator with 3 direc-
tions (y-axis) versus the best direction derived via exhaustive search
(x-axis) on noisy images.

Finally, experiments on an extensive datasets indicate that the
horizontal or vertical directions, corresponding to a classical DWT,
are often chosen (in about 50% of the blocks) as being the best
prediction directions in directional lifting. It makes then sense to
consider the classical vertical (or horizontal) direction apart of the
3 gradient candidates indicated by the algorithm (if they are differ-
ent). The complexity increases from 3/11 up to 4/11 of the original
DADWT complexity, but the chances of identifying the best predic-
tion direction are also increased. Variations of such an approach
may include simple tests, where directional lifting and the proposed
algorithm are activated only on blocks where the accuracy of a clas-
sical DWT prediction is not sufficient.

5. EXPERIMENTAL RESULTS

The experiments of the previous section are repeated on typical
grayscale images, including Baboon and Barbara. The images are
divided into 16 by 16 blocks, and for every block the best direc-
tion is estimated by using our algorithm and the exhaustive search.
The predicted values on the Baboon image after one 1D transform,
calculated with a directional filter, are shown in figure 7.

Visually, the difference between the prediction obtained using
one and three directions respectively can best be seen in the eyes
of the Baboon. The pupil appears somewhat blurred in figure 7c,
while being a lot better in figure 7d. This illustrates that increasing
the number of retained directions from 1 to 3 improves the quality
of the prediction, at the expense of an increased complexity.

To assess the accuracy of our proposed algorithm, we verify if
the estimated direction is the same or close to the direction obtained
via an exhaustive search. Therefore, all the possible prediction di-
rections are ordered from best to worst (as ranked by the L 2-norm
of the prediction errors) and compared to the estimated direction.

Figure 8 shows the results of this comparison. The x-axis in-
dicates how good the estimated direction is: if x = 1, then the esti-
mated direction is the best direction. If x = 2 the estimated direction
is the second best direction, and so on. On the y-axis the cumulative
chance is given. The difference between using one and three direc-
tions respectively is clearly visible. Also, Sobel 4 provides the best
results as it predicts the best direction for 75% of the blocks while
in 90% of cases one of the two best directions is selected.

Figure 8: The cumulative chance of estimating the best prediction
direction in case of the Baboon image.

In order to assess the quality of the different directional lifting
predictors, the entropies of the prediction errors and the peak sig-
nal to noise ratios (PSNRs) between the original and the predicted
images are computed on four grayscale images. The results are re-
ported in table 1. The lowest entropies are found via the exhaustive
search and the highest ones with the Sobel operator, when retaining
only one direction. Using three directions significantly improves the
entropy compared to the case when only one direction is retained.
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(a) Original image (b) Exhaustive search (c) Sobel: one direction (d) Sobel: three directions

(e) Original image (f) Exhaustive search (g) Sobel: one direction (h) Sobel: three directions

Figure 7: Prediction using one 1D directional filtering.

The same goes for the PSNR. We observe that the histogram-based
method with one direction performs well against the magnitude-
based algorithm using three directions. Considering the classical
DWT vertical (or horizontal) directions in the magnitude-based ap-
proach improves significantly the results, bringing them very close
to those obtained via an exhaustive search.

Finally, we note that directional lifting yields a good quality
prediction for most of the images, apart of the Baboon, for which the
PSNR figures are low. The large prediction errors are concentrated
in the fur area, indicating that the considered interpolating wavelets
[1] are inappropriate for highly textured regions, and that shorter,
possibly non-directional predictors should be used instead.

Entropy Baboon Barbara Gertrude Aerial
Exhaustive search 6.2312 3.9149 3.4419 3.7733
Proposed(∗): 1 dir 6.6492 5.2464 4.7864 5.2588
Proposed(∗): 3 dir 6.3890 4.2626 3.9404 4.3749
Proposed(∗): 4 dir 6.2764 3.9729 3.4553 3.7744
Proposed(◦): 1 dir 6.4247 4.3977 3.5292 3.7744
Proposed(◦): 3 dir 6.4032 4.1101 3.4892 3.7744
Proposed(◦): 4 dir 6.3943 4.0750 3.4629 3.7744
PSNR Baboon Barbara Gertrude Aerial
Exhaustive search 21.60dB 35.66dB 37.77dB 36.48dB
Proposed(∗): 1 dir 19.41dB 24.45dB 27.17dB 26.89dB
Proposed(∗): 3 dir 20.69dB 31.98dB 33.31dB 31.48dB
Proposed(∗): 4 dir 21.33dB 35.09dB 37.63dB 36.46dB
Proposed(◦): 1 dir 20.32dB 29.49dB 36.90dB 36.46dB
Proposed(◦): 3 dir 20.49dB 33.90dB 37.34dB 36.46dB
Proposed(◦): 4 dir 20.57dB 34.27dB 37.56dB 36.46dB

Table 1: Entropy and PSNR for the different experiments using the
(∗) magnitude-based and (◦) histogram-based approaches.

6. DISCUSSION AND CONCLUSIONS

The experiments demonstrate the effectiveness of the proposed al-
gorithm to estimate in a fast and simple way the optimum prediction

direction to be used in the directional lifting process. Theoretically,
if the complexity of computing the gradients is neglected, the pro-
posed algorithm reduces the DADWT complexity with a factor of
11/4, for almost no penalty in the prediction accuracy. Ongoing
work is carried out to investigate the impact brought by the use of
the proposed algorithm in actual codecs, using block-based [1] and
segmentation-driven DADWT [2]. Preliminary results with a block-
based codec [1] indicate that the compression performance can be
preserved while the computational complexity is reduced by 60%.
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