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ABSTRACT
We introduce a family of real and complex wavelet bases of
L2(R2) that are directly linked to the Laplace and Riesz op-
erators. The crucial point is that the family is closed with
respect to the Riesz transform which maps a real basis into a
complex one. We propose to use such a Riesz pair of wavelet
transforms to specify a multiresolution monogenic signal
analysis. This yields a representation where each wavelet
index is associated with a local orientation, an amplitude and
a phase. We derive a corresponding wavelet-domain method
for estimating the underlying instantaneous frequency of the
signal. We also provide a simple mechanism for improving
the shift and rotation-invariance of the wavelet decomposi-
tion. We conclude the paper by presenting a concrete analy-
sis example.

1. INTRODUCTION

The analytical signal is a complex extension of a 1D signal
that is based upon the Hilbert transform. This representa-
tion gives access to the instantaneous amplitude and phase
of a signal and is widely used in applications involving some
kind of amplitude or frequency modulations. This type of
AM/FM analysis can also be performed in a multiresolution
framework using Kingsbury’s dual-tree wavelet transform,
which consists of two wavelet transforms which are (approx-
imately) Hilbert transforms of one another [1].

The analytical wavelet approach has also been extended
to higher dimensions through a proper combinations of posi-
tive and negative frequency bands, allowing for a separation
into six distinct orientation channels [2]. While this consti-
tutes a valuable achievement, this type of tensor-product ex-
tension is not entirely satisfactory from a theoretical nor con-
ceptual point of view. In particular, it is not truly rotation-
invariant since the underlying basis functions are not steer-
able. Another way to put it is that the 2D extension of
the dual-tree wavelet transform can only perform a AM/FM
analysis along certain preferential orientations.

While there have been several attempts to generalize the
analytical signal to two dimensions, the most successful one
to date is the monogenic signal of Felsberg and Sommer [3].
The key idea of these authors was to consider the Riesz
transform as the proper multi-dimensional generalization of
the 1D Hilbert transform, and to introduce a corresponding
quaternion formalism.

Our goal in this paper is to specify a minimally-redundant
wavelet counterpart of Felsberg’s monogenic signal rep-
resentation. The approach is analogous to Metikas and
Olhede’s construction of a monogenic continuous wavelet
transform [4], with the fundamental difference that we are
focusing on (non-redundant) wavelet bases. The main fea-
tures of the proposed wavelet decomposition are:

• The monogenic wavelet transform has three components
for any scale/location index; the mother analysis wavelet
is essentially isotropic, while the two others are the com-
ponents of the Riesz transform of the former. In our for-
mulation, the two Riesz wavelets are combined into a sin-
gle complex transform.

• The three wavelet components give access to the local
orientation, as well as to the key AM/FM parameters in
the preferred orientation: amplitude, phase, and instanta-
neous frequency.

• The monogenic wavelet analysis is essentially rotation-
invariant because of: (1) the isotropy of the mother
wavelet, and (2) the fact that the the Riesz transform is
steerable.

• The wavelet transform has a fast filterbank algorithm. In
fact, the decomposition involves the concatenation of two
wavelet bases of L2(R2), the second of which is complex-
valued.

2. COMPLEX RIESZ-LAPLACE WAVELETS

Our construction hinges on the specification of three frac-
tional differential operators:
- the fractional Laplacian of order α ∈ R+

(−∆)α f (xxx) F←→ ‖ωωω‖2α f̂ (ωωω), (1)

- the complex version of the 2D Riesz transform,

R f (xxx) F←→
( jωx−ωy)
‖ωωω‖

f̂ (ωωω), (2)

- and its inverse

R−1 f (xxx) F←→
(− jωx−ωy)
‖ωωω‖

f̂ (ωωω), (3)

where f̂ (ωωω) = F{ f}(ωωω) = (2π)−2 ∫
R2 f (xxx)e− j〈xxx,ωωω〉dxdy

with ωωω = (ωx,ωy) is the 2D Fourier transform of f (xxx) with
xxx = (x,y). Note that these operators are non-local (unless α

is integer) and that their Fourier-domain definition has to be
taken in the sense of distributions.

A key observation is that these operators are all steerable:
this is trivially the case for the Laplacian which is isotropic,
while the complex Riesz transform (or its inverse) can be
rotated by an angle θ by simple multiplication with the com-
plex number e jθ . Another crucial property is that the opera-
tor R is unitary from L2(R2) into itself (the space of complex-
valued finite-energy functions). In other words, R−1 = R∗,
which is the adjoint of R.

Given an admissible 2D dilation (or subsampling) ma-
trix D (e.g., cartesian or quincunx), we define the following
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operator-like wavelets

ψ
m
γ,N(D−1xxx) = R−N(−∆)γ/2

φ2γ(xxx+em), (4)

for N ∈ N,γ ∈ R+, where

φ2γ(xxx)
F←→ 1

1+∑kkk∈Z2\{0}

(
‖ωωω‖

‖ωωω+2πkkk‖

)2γ

and where the vectors {em}M
m=1 are in the coset C \ {e0 =

(0,0)} of the subsampling matrix D. Note that there are
M = det(D)−1 wavelets ψm

γ,N(xxx) of identical shape that are
simply shifted to the available coset positions. The smooth-
ing kernel, φ2γ(xxx), is symmetric and it has the property that
φ2γ(kkk) = δ [kkk]; in fact, it is the unique interpolating kernel
within the space of polyharmonic splines of order 2γ .

Interestingly, these wavelets are equivalent (up to a
proportionality factor) to the complex polyharmonic spline
wavelets defined in earlier work [5, 6], even though our ini-
tial definition did not involve the Riesz transform.

For the particular case N = 0, we recover the frac-
tional polyharmonic spline wavelets which are extensively
characterized in [7]. In the sequel, for notational conve-
nience, we will define the polyharmonic spline wavelet gen-
erator ψ(xxx) = (−∆)γ/2φ2γ(Dxxx) (scale i = 0) and consider
the wavelet basis functions ψi,kkk(xxx) = |det(D)|i/2

ψ(Dixxx−
D−1kkk). The corresponding wavelet subspace at resolution
i is:

Wi = span
{

ψi,kkk(xxx)
}

kkk∈Z2\DZ2 , (5)

which involves placing the rescaled wavelets at the appropri-
ate coset positions. We recall that with the present arrange-
ment, the lattice DZ2 is associated with the approximation
space Vi that is spanned by polyharmonic B-spline βγ(xxx),
which is a valid scaling functions for γ > 1

2 [7]. We also
have the direct sum decomposition property: Vi+1 = Wi⊕Vi,
which is standard in multiresolution analysis.

Based on our previous work, we can list the following
remarkable properties that are satisfied by the present class
of wavelet transforms.

Property 1 (Basis of L2(R2)). The polyharmonic spline
wavelet ψ(xxx) (resp., R−Nψ(xxx)) generates a Riesz1 basis for
W0 (resp., R−NW0). Moreover,

{
ψi,kkk(xxx)

}
i∈Z, kkk∈Z2\DZ2 yields

a Riesz basis of L2(R2) for all γ > 1
2 (the same is also true

for {R−Nψi,kkk}, except that the basis is complex).

Property 2 (Semi-orthogonality). The Riesz-Laplace
wavelets are orthogonal across scales:

∀kkk,lll ∈ Z2, i 6= j, 〈R−N
ψi,kkk,R−N

ψ j,lll〉= 0

Property 3 (Operator like-behavior). The polyharmonic
spline wavelet transform implements a multiscale version of
the Laplace operator:

〈 f ,ψ(Di ·−xxx)〉= (−∆)γ/2( f ∗ϕ(Di·))(xxx)
1A Riesz basis is a fundamental concept in functional analysis that was

introduced by the Hungarian mathematician Frigyes Riesz; it has not much
to do with the Riesz transform that is due to Marcel Riesz (Frigyes’ younger
brother), except perhaps that our complex version of the Riesz transform
maps a Riesz basis into another one.

where the smoothing kernel is ϕ(xxx) = φ2γ(Dxxx), while the N-
Riesz-Laplace wavelet transform does the same for the N-
fold Riesz transform of the input signal:

〈 f ,R−N
ψ(Di ·−xxx)〉 = 〈RN f ,ψ(Di ·−xxx)〉

= (−∆)γ/2(RN f ∗ϕ(Di·))(xxx)

Property 4 The Riesz-Laplace wavelet transform with pa-
rameters (γ,N) has approximation order γ .

Property 5 (Vanishing moments). The Riesz-Laplace
wavelet of order γ has dγe vanishing moments.

Property 6 (Fast implementation). All Riesz-Laplace
wavelet transforms are perfectly reversible and they have a
fast filterbank implementation.

All the above properties are well known for the polyhar-
monic spline wavelets (N = 0). They do extend to the Riesz-
Laplace transform as a consequence of the unitary nature of
the operator R. The important point in the argumentation is
that the structure of the Gram matrix (inner products between
basis functions) are independent upon N.

A somewhat trickier aspect is the specification of a valid
scaling function in the latter case, since the most natural can-
didate R−Nβγ(xxx) (where βγ(xxx) is a polyharmonic B-spline)
is not admissible (due to the singularity of R at the origin).
Fortunately, there are other B-spline-like generators that are
well-behaved and that do yield a stable and efficient (“à la
Mallat”) filterbank implementation [6]. The crucial aspect
for specifying an admissible scaling function is to ensure an
appropriate lowpass frequency behavior around ωωω = 0.

Finally, we note that all the proposed wavelet transforms
are best implemented in the Fourier domain using an FFT-
based algorithm which is remarkably fast. We are currently
working on making the software available publicly.

3. MONOGENIC WAVELET ANALYSIS

Given a 2D signal f (xxx),xxx ∈R2, Felsberg and Sommer define
the 3-component monogenic signal

fm(xxx) = ( f (xxx), Re(R f (xxx)), Im(R f (xxx))) = (q,r1,r2). (6)

The local amplitude of the signal is given by A(xxx) =

‖fm(xxx)‖ =
√

q2 + r2
1 + r2

2, while its local orientation θ and
instantaneous phase ξ are specified by the following rela-
tions:

q = Acosξ , r1 = Asinξ cosθ , r2 = Asinξ sinθ . (7)

In this work, we consider the polyharmonic spline wavelet
of order γ , and use the Riesz-Laplace wavelet transform to
perform the monogenic analysis of a sequence of bandpass
filtered signals ( f ∗ψi)(xxx) where ψi(xxx) = |det(D)|i/2

ψ(Dixxx)
is the normalized and rescaled wavelet a scale i. Indeed, since
the analysis wavelet ψi(xxx) is symmetric, we have that

wi[kkk] = 〈 f ,ψi,kkk〉= (ψi ∗ f )(xxx)|xxx=D−i−1kkk (8)

wR
i [kkk] = 〈 f ,R−1

ψi,kkk〉= 〈R f ,ψi,kkk〉 (9)
= (R(ψi ∗ f ))(xxx)|xxx=D−i−1kkk (10)
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where we have used the property R−1 = R∗. This means that
we can perform a full multiresolution monogenic signal anal-
ysis by running two wavelet transforms in parallel. Specifi-
cally, we set the transform parameters to (γ,0) for extracting
the real-valued signal component, and to (γ,1) for obtaining
the corresponding complex-valued Riesz transform compo-
nent.

The local signal amplitude (AM component) at scale i
and location kkk is then given by

Ai[kkk] =
√

w2
i [kkk]+ |wR

i [kkk]|2

while the corresponding local orientation is

θi[kkk] = arctan
(

Im(wR
i [kkk])

Re(wR
i [kkk])

)
,

Alternatively, the orientation may be represented by a unit
vector uuu. The intuitive interpretation of uuu is akin to the di-
rection of the gradient; that is, the direction where the rate of
change is maximal.

Once Ai[kkk] and θi[kkk] have been determined, we can refer
to (7) to obtain the corresponding local phase ξi[kkk]. Of even
greater interest is the local frequency (or wave number) that
corresponds to the derivative of ξ in the direction specified
by uuu [8]. After some algebraic manipulation (cf. Appendix),
we obtain the following equation for the instantaneous fre-
quency

νi[kkk] =
Re

(
wR

i [kkk]〈 f ,Rψ ′i,kkk〉
)
−wi[kkk]〈 f ,ψ ′i,kkk〉

A2
i [kkk]

, (11)

which has the advantage of avoiding the use of the
arctan function and all the problems associated with phase-
wrapping. The additional information that is required is the
computation of spatial derivatives in the direction of uuu which
is achieved economically by considering two auxiliary Riesz-
Laplace wavelets ψ ′ and Rψ ′ of reduced order γ − 1. The
definition of these auxiliary wavelets is

ψ
′(xxx) =

(
∂

∂x
+ j

∂

∂y

)
R∗ψ(xxx) = (−∆)1/2

ψ(xxx)

F←→ ‖ωωω‖ψ̂(ωωω),

Rψ
′(xxx) =

(
∂

∂x
+ j

∂

∂y

)
ψ(xxx)

F←→ ( jωx−ωy)ψ̂(ωωω).

The first is real, symmetric and is designed to calculate the
“Laplacian” term −(r1x + r2y), while the second is complex
and is associated with the adjoint-gradient term (−qx + jqy)
(cf. Appendix). The main point is that these additional
“derivative” wavelet transforms can be calculated using es-
sentially the same filterbank algorithm with an appropriate
modification of the analysis filters. This means that the cost
for obtaining an instantaneous frequency estimate is about
twice that of the original monogenic wavelet decomposi-
tion. The advantage of the present formulation is that the
frequency formula (11) is exact and that it does not involve
any finite difference approximation of the spatial derivatives.

4. RESULTS

We will now discuss some practical issues and present con-
crete analysis examples. For now on, we consider the case of

a dyadic analysis with D =
(

2 0
0 2

)
.

4.1 Improving the invariance properties
The monogenic wavelet transform that was introduced so far
is elegant mathematically because it is tied to a basis. How-
ever, there is also a downside which is some lack of invari-
ance. We will now show how to bypass this limitation.

4.1.1 Shift invariance

Eventhough it is build around a single wavelet, the wavelet
analysis of Section 3 is somewhat awkward to interpret be-
cause the transform is missing the wavelets at the subsam-
pling location corresponding to the next coarser grid (coset
vector e0 = (0,0)). It is therefore tempting to include the
“missing” shifts as well, and to rearrange the wavelet coef-
ficients into a single, image-like subband at scale i. This is
equivalent to not subsampling the wavelet subband after dig-
ital filtering. Consequently, we obtain the enlarged analysis
spaces

W +
i = span

{
2i

ψ(2ixxx−kkk/2)
}

kkk∈Z2 . (12)

where ψ is the mother wavelet of order γ . The correspond-
ing notation for the (non-subsampled) wavelet coefficients at
scale i is wi[k] (as before) and all previous formulas are still
applicable with kkk spanning over Z2 instead of Z2\2Z2. The
same arrangement is also used for the Riesz branch of the
transform. This extension improves the shift-invariance of
the decomposition and its cost is moderate (redundancy fac-
tor of 1/4).

4.1.2 Rotation invariance and steerability

The other weak point is that the smoothing kernel φ2γ of our
defining wavelet is not isotropic. In fact, it is sinc-like since
it is an interpolating function. We propose to exploit the de-
grees of freedom provided by the enlarged wavelet spaces
W +

i to tune the kernel’s shape to make the wavelet more
nearly isotropic. Our solution is to select the “isotropic”
polyharmonic B-spline β2γ as our new smoothing kernel.
This is justified by the fact that this B-spline spans the same
spline space as φ2γ , with the advantage that is is better local-
ized and that it converges to a Gaussian as γ increases [7].
The frequency-domain formula for our new smoothing ker-
nel is

β2γ(xxx)
F←→

(
V (e jωωω)
‖ωωω‖

)2γ

,

where V (e jωωω) is the “most-isotropic” discrete Laplacian filter

V (e jωωω) =
8
3

(
sin2

(
ω1

2

)
+ sin2

(
ω2

2

))
+

2
3

(
sin2

(
ω1 +ω2

2

)
+ sin2

(
ω1−ω2

2

))
.

The corresponding mother wavelet to be used in replacement
of the preceding one is ψ(xxx/2) = (−∆)γ/2β2γ(xxx), while the
whole monogenic analysis procedure remains the same as
described earlier. This is entirely justifiable mathematically
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(a) (b)

(c)

Figure 1: (a) Smoothing kernel β8(xxx). (b) Isotropic polyhar-
monic wavelet ψ(xxx/2) = ∆2β8(xxx). (c) 2D Riesz transform
Rψ of (b), real and imaginary parts.

since the modified Mexican-hat-like wavelet also spans the
analysis spaces W +

i . Concretely, this wavelet substitution
amounts to a simple change of wavelet filters in the algorithm
in a manner that is fully reversible and transparent to the user.
The benefit of this adaptation is a substantial improvement
of the steerability of the transform; this is essential for the
feature extraction process to be truly rotation-invariant.

In Fig. 1, we show the various functions for the case
γ = 4. In (a), we depict the smoothing kernel β8, which
closely resembles a Gaussian with standard deviation

√
2/3.

In (b), we show the isotropic polyharmonic mother wavelet
ψ(xxx/2) = ∆2β8(xxx). Finally, in (c), we included both the real
and imaginary parts of the complex version of the 2D Riesz
transform Rψ .

4.2 Experimental result
We show an example of the monogenic wavelet analysis of
the AM-encoded image. The original information image is
shown in Fig. 2 (a), and its interferometric version in (b).
The encoding is done by a zoneplate; i.e., a circular wave
propagating with constant frequency.

The various components of the monogenic wavelet anal-
ysis are shown in Fig. 3. In (a), the directional information is
adequately captured by the orientation. In (b), the instanta-
neous frequency is also well recovered and constant. Finally,
the AM-encoded information can be retrieved by the modu-
lus in (c). The multiscale interpretation shows the strongest
signal in the second subband, since the zoneplate frequency
has the highest response at this scale. The attenuation is
clearly visible at the third subband. Note that the instante-
neous frequency can provide more fine-granular information
about the carrier wave.

5. CONCLUSION

We have set the mathematical foundations of a monogenic
wavelet transform that gives access to the local orientation,
amplitude and phase information of a 2D signal. The trans-
form is build around the monogenic extension of a poly-
harmonic spline wavelet basis of L2(R2). The decomposi-

(a)

(b)

Figure 2: (a) Original information image. (b) AM-encoded
interferometric version.

tion is reasonably fast, moderately redundant (a factor be-
tween 3 and 4), and fully reversible. Potential applica-
tions include various type of image analyses—in particular,
interferograms—as well as image enhancement and denois-
ing since the transform is reversible.

A. INSTANTANEOUS FREQUENCY
CALCULATION

We consider the monogenic wavelet components (q =
Acosξ , r1 = Asinξ cosθ , r2 = Asinξ sinθ) and define r =√

r2
1 + r2

2 = Asinξ . The orientation vector is given by uuu =
(cosθ ,sinθ) = (r1/r,r2/r). We also introduce the complex
variable z = Ae jξ = q + jr, which conveniently summarizes
the amplitude and phase information.

Our goal is to determine the instantaneous frequency ν =
Duuuξ , which is the derivative of ξ is the direction specified by
uuu. To that end, we first evaluate the phase gradient using the
property that ξ = Im(logz):

∇ξ = Im
(

∇z
z

)
=
−r ∇q

A2 +
q(r1∇r1 + r2∇r2)

r A2

with the differential notation ∇ f = ( ∂ f
∂x , ∂ f

∂y ) = ( fx, fy). To
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(a) (b) (c)

Figure 3: Various components of the monogenic Riesz-Laplace wavelet transform for the test image of Fig. 2 (b). (a) Orien-
tation (in hue). (b) Instantaneous frequency. (c) Modulus.

evaluate the directional derivative, we compute the inner
product with uuu, which gives

Duuuξ = 〈∇ξ ,uuu〉 =
−r1qx− r2qy

A2 +
q(uuuT Huuu)

A2

where H =
(

r1x r1y
r2x r2y

)
is a symmetric matrix (analogous

to the Hessian) due to the properties of the Riesz transform.
If we now assume that the underlying signal is a pure plane
wave that propagates in the direction uuu, then H is of rank 1
and uuuT Huuu = λmax = trace(H) = r1x + r2y. This leads to the
simplified formula

ν = Duuuξ =
−r1qx− r2qy

A2 +
q(r1x + r2y)

A2 ,

which is the same result as [8, Theorem 4]. The critical in-
gredient for this determination is to provide a numerical pro-
cedure for computing the derived quantities (−qx + jqy) and
−(r1x +r2y), which can be done in an efficient way using two
reduced-order wavelet transforms, as specified in the text.
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