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ABSTRACT

This paper addresses the problem of localizing an acoustic
source by optimally fusing the observations provided by dis-
tributed microphone arrays. We consider a two-step process.
First, each array provides an estimate of the source position
by measuring the TDOAs (time differences of arrival) be-
tween each pair of microphones of the array. Then, these esti-
mates are optimally fused taking into account the geometry of
the arrays, in order to provide the final estimate of the source
location. We study the performance of this approach by pro-
viding a closed form expression of the Cramer-Rao bound for
a few simple geometries.

1. INTRODUCTION

The problem of localizing a source by means of acoustic mea-
surements collected by a microphone array has been thor-
oughly studied in the literature. A recent survey of the most
relevant techniques can be found in [1]. A large class of these
methods divides the problem in two steps: first, the time dif-
ferences of arrivals (TDOA) between microphone pairs are
estimated; then, the source location is obtained based on these
measurements.

In some scenarios, especially when the total number of
microphone sensors is large, it might be useful to split the lo-
calization problem among a set of microphone arrays. Each
sub-array solves the localization problem independently, and
the final estimate of the source location is provided by a cen-
tral node that optimally fuses the estimates provided by the
individual sub-arrays. The rationale behind splitting a large
array into smaller sub-arrays lies mainly in the reduced cost
in terms of computational complexity. It can be shown [2] that
using all the possible TDOAs in a microphone array leads to
better result in terms of localization precision. Thus, having
M microphones on the whole, the computational cost due to
the TDOA estimation of the single array strategy grows as
O(M2), while the cost of distributing the computation among
S sub-arrays, each with N = M/S microphones, grows as

O(M2/S). In addition, when the arrays are deployed as a sen-
sor network, the cost of data communication between the mi-
crophones and the base station becomes also relevant, and it
becomes more convenient to transmit the local estimate of the
source position from each array instead of the whole acoustic
signal from each sensor to the centralized processor.

In the literature, the problem of obtaining the source po-
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Fig. 1. Block diagram of the array fusion system.

sition by fusing multiple array estimates has been addressed,
but mainly in the far-field scenario. In [3], the maximum like-
lihood estimation of the direction of arrival is studied, when a
large array is partitioned into sub-arrays. In [4], a distributed
processing scheme is proposed, which performs direction of
arrival (DOA) estimation at the individual arrays and time-
delay estimation between pairs of arrays. Therefore, partial
communication between sub-arrays is enabled. To the au-
thors’ knowledge, the only previous work that addresses the
localization problem in the near field scenario, by fusing mul-
tiple array observations, is [5]. Each sub-array computes a
spatial likelihood function using a conventional SRP-PHAT
technique. The spatial likelihood functions are blended to-
gether by properly weighting the different level of access that
a microphone array has to different spatial positions. Nev-
ertheless, the weighting is obtained experimentally, by prob-
ing the system in an off-line training phase. Also, no theo-
retical evidence is given about the performance of the pro-
posed method. Recently, the relation between optimal mi-
crophone array geometries and the variance of location es-
timates has been formalized by Yang and Scheuing [2][6].
When the noise affecting TDOA measurements is Gaussian,
the Cramer-Rao bound can be written in closed form, and it
depends only on the noise covariance matrix and on the ar-
ray geometry. In [2] necessary and sufficient conditions for
the optimum array geometry which minimizes the bound are
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provided, when TDOAs of all microphone pairs are collected.
The work is extended in [6], where only a subset of TDOAs,
all relative to a reference microphone, is adopted, such as
in least squares based methods (e.g. spherical interpolation,
spherical intersection, linear corrected least squares).

This paper analyzes the performance of a two-step lo-
calization process in a 2-dimensional space based on TDOA
measurements. Each sub-array provides an estimate of the
source location to a central processing node. Unlike [4], the
scheme we study in this paper does not involve any data com-
munication between sub-arrays. The central processing node
performs optimal fusion, based on the incoming estimates and
the knowledge of the array geometry. The Cramer-Rao bound
is derived for a few simple array geometries for which the
problem is mathematically tractable.

2. FUSION OF LOCALIZATION MEASUREMENTS

Consider the system illustrated in Figure 1, which consists of
S distributed microphone arrays, each with N microphones.
The source is located in p = [p1, p2]

T . We assume that each
array provides an unbiased estimate of the location of the
acoustic source, i.e. p̂s. Possibly, an estimate of the covari-
ance matrix Cs = E[(p̂s −p)(p̂s −p)T ] is also given. As we
shall see later, Cs depends on the actual estimator adopted,
and it is typically related to the array and source geometry and
to the measurement noise. The data fusion module receives p̂s

and Cs, s = 1, . . . ,S, and it computes the final estimate of the
source, i.e. p̂F .

The data model adopted by the fusion module is summa-
rized by the following equation:

p̂s = p+ws, (1)

where ws ∈ R
2 denotes the position error in the estimate pro-

vided by array s, which is directly related to the error in the
estimated TDOAs at each microphone. We postulate that no
anomalies occur in the TDOA estimation process, i.e. there
are no spurious peaks in the autocorrelation function due, for
example, to reverberation [7]. If we assume that the SNR
is high and no reverberation occurs, then the errors on the
TDOA estimates are relatively small, and ws can be modeled
as a zero mean, Gaussian distributed random process with co-
variance matrix E[wsw

T
s ] = Cs (i.e. ws ∼ N (0,Cs)). Thus,

the likelihood function can be written as

L(p; p̂1, . . . , p̂S) =
S

∏
s=1

1

2π|Cs|
e−

1
2 (p̂s−p)T C−1

s (p̂s−p). (2)

We assume that the data fusion module adopts a maximum
likelihood estimator (MLE) to compute p̂F . For linear data
models and Gaussian noise as in (1), the MLE is unbiased and
efficient, and its variance attains the Cramer-Rao lower bound
(CRLB) also for a finite number of measurements S. If the
noise pdf is unknown, the MLE still represents a meaningful
estimator, as it is the best linear unbiased estimator (BLUE)
[8].

In order to find the MLE, we need to compute the first
order derivative of the log-likelihood function with respect to

p, and set it equal to zero, i.e.:

∂ logL(p; p̂1, . . . , p̂S)

∂p
=

∂

∂p

[

− log
S

∑
s=1

2π|Cs|− . . .

. . .−
1

2

S

∑
s=1

(p̂s −p)T C−1
s (p̂s −p)

]

=
S

∑
i=1

C−1
s (p̂s −p) = 0. (3)

Therefore, the MLE of the source position is given by

p̂F =

(

S

∑
s=1

C−1
s

)−1

·

(

S

∑
s=1

C−1
s p̂s

)

. (4)

The value p̂F is a stationary point of the likelihood function
(2). It is a point of maximum, since the second order deriva-
tive is negative definite. In fact:

∂

∂p

[

∂ logL(p; p̂1, . . . , p̂S)

∂p

]

= −
S

∑
s=1

C−1
s . (5)

The CRLB is found as the element (i, i) of the inverse of
the Fisher information matrix, i.e.

var(p̂i) ≥ [I−1
F (p)](i,i), (6)

where

IF(p) = −E

{

∂

∂p

[

∂ logL(p)

∂p

]}

=
S

∑
s=1

C−1
s . (7)

We notice that, if the MLE is used to perform data fusion,
the CRLB of the final estimate p̂F depends on the covariance
matrices Cs, s = 1, . . . ,S of the individual arrays. In the fol-
lowing section, we introduce an expression for Cs, when the
acoustic source localization is performed by means of TDOA
measurements.

3. SOURCE LOCALIZATION FROM TDOA
MEASUREMENTS

Each microphone array consists of N sensors at locations qn,
n = 1, . . . ,N. If we consider the TDOA measurement noise
to be zero-mean, Gaussian and i.i.d. with variance σ2, the
Fisher information matrix (FIM) is given by [2]:

I(p) =
GGT

(σν)2
(8)

where ν denotes the speed of sound and

G = [. . . ,gi j, . . .](i, j)∈{(i, j)|1≤ j<i≤N} (9)

gi j = gi −g j (10)
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gi =
p−qi

‖p−qi‖
, i = 1, . . . ,N (11)

i.e. gi is the unit norm vector pointing from the ith micro-
phone to the source.

The Fisher information matrix can be rewritten as [2]

I(p) =
NggT − (g1)(g1)T

(σν)2
(12)

where g = [g1, . . . ,gN ] and 1 = [1,1, . . . ,1]T .

4. A SIMPLE DISTRIBUTED ARRAY GEOMETRY

In order to make the following discussion mathematically
tractable, we consider a simple geometry with S arrays. Each
array consists of N microphones located along a circle cen-
tered in the source position, i.e. p = 0. For the first array, i.e.
s = 1, the microphone positions are given by

qn = R[cos(αn),sin(αn)]
T , n = 1, . . . ,N, (13)

where R is the radius of the circle, and

αn =
2πn

K
−π

(

N −1

K

)

. (14)

The value of K ≥ N determines the angular aperture of the
array (see Figures 2 and 3). Large values of K correspond to
small angular distances between microphones. When K = N,
microphones are uniformly spaced over the whole circle,
while K ≫ N means that the array is located on a small circu-
lar sector.

Also, we postulate that each array adopts an unbiased
and efficient estimator, which attains the CRLB. Actually,
such an estimator does not exist [2], since the MLE estima-
tor for source location [1] is only asymptotically efficient, i.e.
Cs > I−1

s . Nevertheless, as shown in [9], the variance of the
MLE is very close to the theoretical CRLB when just a small
number of microphones (e.g. N ≥ 6 sensors) is used for each
array. Therefore, in the following we consider the sensor fu-
sion performance in terms of the CRLB, which can be con-
sidered a tight bound on the estimator variance, provided that
the number of microphones for each array is not too small, or
equivalently, that the number of arrays S is not too large (see
Figures 2-3).

For the problem at hand, gn = −qn/R, and the Fisher in-
formation matrix for the first array is given by

I1 =
G1G1

T

(σ1ν)2
=

1

(σ1ν)2

(

1/λ1 0
0 1/λ2

)

(15)

where

1

λ1
= N

N

∑
n=1

cos2(αn)−

[

N

∑
n=1

cos(αn)

]2

,

1

λ2
= N

N

∑
n=1

sin2(αn) (16)
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(a) Multi-array geometry.
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(b) Cramer-Rao Bound

Fig. 2. In the top part of the figure, multi-array geometry with
M = 24 microphones, S = 4 arrays, and K = SN = M, i.e. each
array is distributed over 1/4 of the circle. In the bottom part,
the trace of the inverse FIM for different kinds of array ge-
ometries, when the available number of microphones M = 24
is distributed across S arrays and K = M (K = N for inter-

leaved configuration). The values of tr{I−1
F } are normalized

by the trace of the inverse FIM of a single array with S = 1.

Therefore

C1 > σ2ν2

(

λ1 0
0 λ2

)

(17)

We assume that the microphone locations for the other
arrays (i.e. s = 2, . . . ,S) are obtained by rotating the first array
by an angle equal to αs. By defining different values for αs,
we can obtain the following distributed geometries for a set
of S microphone arrays:
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• mono-sector array: αs = 0,s = 2, . . . ,S
• multi-sector array:

– S = 2, α2 = π/21

– S > 2, αs =
2π(s−1)

S
,s = 2, . . . ,S

• interleaved array: K = N, αs = any

If we assume that the source is isotropic and the gains of the
microphones are all equal, σ1 = σ2 = . . . = σS = σ .

In the following, we compare the three aforementioned
geometries in terms of localization performance. To this end,
as in [2], the metrics adopted is the trace of the inverse of the

FIM, i.e. tr{I−1
F }.

4.1. Mono-sector array

In this scenario, we have a superposition of S co-located ar-
rays. Therefore, Cs = C1, s = 2, . . . ,S and

tr{I−1
F }MONO =

tr{C1}

S

>
tr{I−1

1 }

S

=
σ2ν2(λ1 +λ2)

S
. (18)

An expression for tr{I−1
1 } was found in [6], and it is equal to

tr{I−1
1 } =

4σ2ν2

N2

1−ρ2
2

(1−ρ1)(1+ρ1 −2ρ2
2 )

, (19)

with

ρ1 =
sin(2πN/K)

N sin(2π/K)
, ρ2 =

sin(πN/K)

N sin(π/K)
, (20)

A more compact approximation of the previous expression
can be obtained as follows. From [2] we have:

tr{I−1
1 } = tr{(GGT )−1} ≥

4σ2ν2

tr{GGT}
(21)

Although the equality holds only for arrays uniformly dis-
tributed along the circle, a good approximation is given by:

tr{I−1
1 } ∼

4σ2ν2

tr{GGT}
S3/2 =

4σ2ν2S3/2

N2 −
∣

∣

∣

sin(πN/K)
sin(π/K)

∣

∣

∣

2
(22)

Therefore, we obtain

tr{I−1
F }MONO >

4σ2ν2S1/2

N2 −
∣

∣

∣

sin(πN/K)
sin(π/K)

∣

∣

∣

2
(23)

4.2. Multi-sector array

In this scenario each array spans a sector, and there are S dis-
tinct sectors uniformly spaced along the circle. Therefore, we
can write

Cs = TsC1T
T
s (24)

1It can be shown that α2 = π is not optimal, while α2 = π/2 is.
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(b) Cramer-Rao Bound

Fig. 3. In the top part of the figure, multi-array geometry
with M = 24 microphones, S = 4 arrays, and K = 4SN = 4M,
i.e. each array is distributed over 1/16 of the circle. In the
bottom part, the Cramer-Rao bound for different kinds of ar-
ray geometries, when the available number of microphones
M = 24 is distributed across S arrays and K = 4M. The val-

ues of tr{I−1
F } are normalized by the same value of Figure 2

for comparison.

where Ts is an orthonormal rotation matrix given by

Ts =

[

cos(αs) −sin(αs)
sin(αs) cos(αs)

]

(25)
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Setting

a =
S

∑
s=1

cos2(αs), b =
S

∑
s=1

sin2(αs),

c =
S

∑
s=1

sin(αs)cos(αs) (26)

and combining (7) and (24), we get

tr{I−1
F }MULTI =

(

S

∑
s=1

C−1
s

)−1

=

(

S

∑
s=1

TsC
−1
1 TT

s

)−1

> σ2ν2

[

a
λ1

+ b
λ2

c
λ1

+ c
λ2

c
λ1

+ c
λ2

b
λ1

+ a
λ2

]−1

=
2σ2ν2

S

[

λ1λ2
λ1+λ2

0

0
λ1λ2

λ1+λ2

]

=
4σ2ν2

tr{GGT}
·S−1

=
4σ2ν2S−1

N2 −
∣

∣

∣

sin(πN/K)
sin(π/K)

∣

∣

∣

2
(27)

4.3. Interleaved array

In this scenario, each array has uniformly spaced micro-
phones along the circle. The covariance matrix C1 is given
by

C1 = σ2ν2

[

2/N2 0

0 2/N2

]

(28)

Since Cs = C1, s = 2, . . . ,S,

tr{I−1
F }INTER >

tr{C1}

S
=

4σ2ν2

SN2
(29)

5. SIMULATION RESULTS

It is interesting to compare the three geometries described in
Section 4 in terms of localization accuracy, for the same total
number of microphones M. Figure 2(b) shows the Cramer-
Rao bound when M = 24, N = M/S and K = N, normalized

by 4σ2ν2/M2, i.e. the optimal accuracy attained when the
M microphones are uniformly distributed around the source
to form a single array. This normalized value is referred to
in the literature [6] as geometric dilution of precision, since
it accounts for the loss induced by the array geometry. The
plot shows the Cramer-Rao bound for the mono-sector, multi-
sector and interleaved geometries, for a different number of
sub-arrays. The plot also shows as a reference the Cramer-
Rao bound for a single array of N = M/S microphones.
As an example, Figure 2(a) shows the multi-sector scenario
when S = 4. We notice that the mono-sector geometry per-
forms worse. By comparing (23) and (27), we observe that

tr{I−1
F }MONO/tr{I−1

F }MULTI ∼ S3/2, i.e. the gain of adopt-
ing a distributed array geometry increases with the number of
sub-arrays. This is due to the fact that the geometric dilution

of precision of the individual arrays is partially compensated
by the fusion process only in the multi-sector scenario. The
interleaved scenario achieves the best performance, since the
individual arrays do not suffer from any geometric dilution of
precision.

Figure 3(b) shows similar results, but when K = 4N, i.e.
the angular aperture of the individual sub-arrays is 4 times
smaller than before. Figure 3(a) shows an example when S =
4. Comparing Figure 3(b) with Figure 2(b), we notice that,
for the same number of sub-arrays S, the localization accuracy
decreases, due to the higher geometric dilution of precision of
the individual arrays.

6. CONCLUSIONS

In this paper we investigated the Cramer-Rao bound of the
localization accuracy, when the estimates provided by dis-
tributed sub-arrays are fused together in a central node. Fu-
ture investigation will address the accuracy-resources trade-
offs that arise when computational and/or communication
power is constrained.
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