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ABSTRACT

A novel directionally adaptive image interpolation method
based on the oriented wavelet transforms is proposed. The
method uses the wavelet transforms built along multiple di-
rections (directionlets) to efficiently capture directional fea-
tures and to extract edge information from the low-resolution
image. Then, the high-resolution image is synthesized using
the extracted information to preserve sharpness of edges and
texture. The novel interpolation algorithm outperforms the
state-of-the-art methods in terms of both numeric and visual
quality of the interpolated image.

1. INTRODUCTION

The problem of image interpolation commonly refers to gen-
erating missing image pixels at high-resolution (HR) from
the available low-resolution (LR) image information. This
task is often required in resolution enhancement or magnifi-
cation, which is an essential part of software zooming, focus-
ing regions of interest, resolution conversion (e.g. in printer
drivers), etc. The main challenge is to preserve sharpness in
images at HR.

The traditional magnification approaches based on bicu-
bic or spline interpolation [1] are used because of fast com-
putation, easy implementation and no a priori knowledge
assumption. However, these methods generate blurred HR
images from their LR counterparts. The goal in this paper
is to propose a method that reduces this blurring effect.

Several recent methods improve the visual quality of the
interpolated images by exploiting the correlation among im-
age pixels and modeling it using the Markov random field
either in the wavelet [2, 3] or in the pixel domain [4]. Fur-
thermore, in [4], Li and Nguyen characterize pixels as edge
and non-edge and apply different interpolation algorithms
to them. Edge-adaptivity and geometric regularity are also
exploited in [5] and [6]. In the latter, the edge directions are
extracted from the LR covariance matrices and are used to
estimate the corresponding covariance matrices at HR. How-
ever, the computation of the covariance matrices is limited
only to the first four neighbor pixels. As a result, the recon-
structed edges in the interpolated HR image are still blurred
when compared to the edges in the original image.

Another adaptive interpolation method has been pro-
posed in [7]. This method makes use of the multiscale two-
dimensional (2-D) wavelet transform (WT) to capture and
characterize edges, which induce peaks in the wavelet sub-
bands. The characterization involves estimation of location,
magnitude and evolution of the corresponding peaks across
wavelet scales determined by the local Lipschitz regularity of
edges [8, 9]. This information is used to estimate the corre-
sponding wavelet subbands in the HR multiscale decompo-
sition and to generate the HR image by applying the inverse
2-D WT. The preserved characterization of edges at HR al-
lows for sharpness and a good visual quality of the recon-
structed images. However, notice that the implemented WT
is a separable transform constructed only along the horizon-

HR ¢ LR HR

-~ [ap| Inverse
“:gg‘ée — 3-Band |——
| | 2wt | X

Extrapolation

3-Band | HP
X 2-DWT

0 est

Available image

Figure 1: Block diagram of the interpolation algorithm pro-
posed in [7].

tal and vertical directions [8]. Thus, it fails to characterize
efficiently edges along different directions.

Recently, the 2-D WT built along multiple directions
(directionlets) has been proved [10, 11] to provide sparse
representation of images and to improve the performance
of wavelet-based image compression methods. This achieve-
ment motivates an implementation of directionlets in the in-
terpolation method in [7] to improve the characterization
of edges in images along different directions. In the novel
interpolation method, proposed here, directionlets are con-
structed adaptively so that the chosen directions are max-
imally aligned with locally dominant directions across im-
age. Because of the alignment, the transform generates a
sparser representation with a reduced energy in the high-
pass wavelet subbands allowing for a more robust estima-
tion of the edge characteristics. The interpolated images
have better numeric and visual quality than the images ob-
tained by both the bicubic interpolation and the previous
wavelet-based method, as shown in the sequel.

The outline of the paper is as follows. The interpolation
method proposed by Chang et al. [7] and the basic properties
of directionlets are reviewed in Section 2. Then, in Section
3, the novel interpolation method is presented, with expla-
nation of determination of locally dominant directions and
the details of the algorithm. Interpolated images are shown
and compared to the previous results in Section 4. Finally,
a conclusion is given in Section 5.

2. REVIEW OF BACKGROUND WORK

Here, because of lack of space, only a short review of the two
concepts is given. More detailed explanation of the previ-
ous interpolation algorithm can be found in [7], whereas the
construction of directionlets is introduced in [10].

2.1 Locally adaptive wavelet-based interpolation

This algorithm is based on an assumption that the available
LR version of image is obtained from the HR original image
as a low-pass output of the 3-band 2-D WT (1 low-pass and
2 high-pass subbands), which is also used in [8]. The main
idea is to estimate the corresponding missing HR low-pass
and two high-pass subbands from the available LR image.
Then, the inverse 3-band 2-D WT applied to these subbands
provides a reconstructed HR image with preserved sharpness

(Fig. 1).
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Figure 2: An example of construction of directionlets based
on integer lattices for pair of directions (45°, —45°).

The process of estimation of the 3 wavelet subbands con-
sists of two phases: (a) initial estimate and (b) iterative pro-
jections onto convex sets (POCS). In the first phase, the
initial estimates of all the 3 subbands at HR are computed.
The low-pass subband is simply obtained by the bicubic in-
terpolation of the LR image. However, since the high-pass
subbands play an important role in obtaining a sharp re-
constructed image, they are generated using a more sophis-
ticated method. First, a multiscale 3-band 2-D WT is ap-
plied to the LR image with 3 levels of decomposition. Then,
extrema of the wavelet coefficients are found in each row
and column of the high-pass subbands across scales to deter-
mine the location and parameters of sharp variation points
(SVP). The extrema of the magnitudes at consecutive scales
j=1,...,J related to a single SVP indexed by m obey the
scaling relation [8]

WO fm)| = K2, ()

where K,, and «a,, are the SVP parameters assigned to the
mth SVP, that is, the corresponding scaling constant and lo-
cal Lipschitz regularity, respectively. These two parameters
are estimated from the determined extrema in the wavelet
subbands by linear regression and they are used to extrap-
olate the corresponding coefficient values in the missing HR
high-pass subbands. The other high-pass coefficients that
do not correspond to any SVP are filled by a simple linear
interpolation along rows and columns.

In the second phase, the estimated wavelet subbands are
iteratively projected onto 3 convex sets determined by the
following properties: (a) the 3 wavelet subbands must belong
to the subspace of the wavelet transform, (b) the subsampled
low-pass subband must be consistent with the LR image and
(¢) the high-pass subbands must be consistent with the ini-
tially extracted SVP information. The final estimation of
the wavelet subbands is transformed back to the original
domain using the corresponding inverse 3-band 2-D WT to
obtain the interpolated HR image.

Notice that, because of the initial assumption, this inter-
polation algorithm is invertible, that is, the invert process
of low-pass filtering and subsampling applied on the inter-
polated HR image would result in the same LR version.

2.2 Directionlets

Directionlets are constructed as basis functions of the skewed
anisotropic wavelet transforms [10]. These transforms make
use of integer lattices to apply the scaling and wavelet fil-
tering operations along a pair of directions, not necessarily
horizontal or vertical. The basic operations are purely one-
dimensional (1-D) and, thus, directionlets retain separabil-
ity and simplicity of the standard 2-D WT. Fig. 2 shows
an example of the construction of directionlets for pair of
directions along 45° and —45°. Notice that, even though the
originally proposed transform in [10] is critically sampled
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Figure 3: The transform directions are chosen within each
spatial segment of the size 16 x 16 so that the energy in
the high-pass subbands is minimized allowing for the best
matching with locally dominant directions in image. The set
of chosen directions forms a directional map. The original
images and the corresponding directional maps are shown
for (a) Lena and (b) Baboon.

(the filtering operations are followed by subsampling), here
an oversampled version is used by removing the subsampling
operations. Such a construction results in a shift-invariant
transform with a preserved number of coefficients in each
subband, which makes it easy to handle with rotated image
rows and columns that have different lengths.

3. DIRECTIONALLY ADAPTIVE
INTERPOLATION

The restriction of having only two directions in the construc-
tion of directionlets implies a need for spatial segmentation
of image and adaptation of the transform directions in each
segment. The assigned pairs of transform directions to each
segment across the image domain form a directional map.
The computation of such a map is explained in the sequel.

3.1 Directional map

Image is first divided into spatial segments of the size 16 x 16
pixels.! Directionlets are then applied in each segment along
each pair of directions from the set D = {(0°,90°), (0°,45°),
(0°,—45°%), (90°,45°), (90°,—45°)} using the biorthogonal
79-77 1-D filter-bank [12]. Notice that the corresponding
lattices for these pairs of directions do not divide the cubic
lattice into more cosets, as explained in [10] in detail. To
avoid a blocking effect in the transform domain caused by
many small segments, the pixels from the neighbor segments
are used for filtering across the segment borders. Another
possible solution to this issue is to use overlapping segments
with estimation based on weighted average, but it is left for
future work.

The best pair of transform directions d;, € D is chosen

IDifferent sizes do not influence significantly the final results.
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for each segment indexed by n as
. . (d) |2
d, = arggé%lz [(Wooi 17, (2)

where the wavelet coefficients WT(L? are produced by applying
directionlets to the nth segment along the pair d. The direc-
tional map determined by a set {d;,} minimizes the energy
in the high-pass subbands and provides the best matching
between transform and locally dominant directions across
segments. For the reason of simplicity of implementation,
the pair (0°,90°) is assigned by default to smooth segments
with no apparent dominant direction (i.e. with low variation
of the energy in the high-pass subbands for d € D). Two ex-
amples of directional map are shown in Fig. 3 for the images
Lena and Baboon.

The concept of directional map is used in the new inter-
polation algorithm to improve the extraction of edge infor-
mation and the estimation of the HR wavelet subbands, as
presented next.

3.2 Interpolation algorithm

The proposed novel interpolation algorithm relies on the sim-
ilar ideas as the previous method in [7] (revisited also in Sec-
tion 2.1) with several modifications caused by implementa-
tion of directionlets instead of the 3-band 2-D WT. Similarly,
the goal is, first, to estimate the corresponding wavelet sub-
bands at HR and, then, to apply the inverse transform to
obtain a reconstructed HR image.

The estimation of the wavelet subbands also consists of
the two phases: (a) initial estimate and (b) iterative POCS.
In the initial estimate, the low-pass subband is bicubic-
interpolated from the LR image, whereas the high-pass sub-
bands are generated from the extracted SVP information.
However, as opposed to the 3-band 2-D W', directionlets
produce three high-pass subbands per scale denoted as HL,
LH and HH according to the order of the low-pass and high-
pass filtering in the two transform steps. In case of the sub-
bands HL and LH, the search for SVP and the extraction of
the SVP parameters are performed along the first and second
transform directions, respectively (instead of the horizontal
and vertical directions in the previous method), whereas, in
case of the subband HH, this process is applied along any
of the two directions. Owing to the properties of the ap-
plied transform, the extrema of the magnitudes of the direc-

tionlets coefficients |Ws(j>f(a:m)| at scales j = 1,...,J, for
s € {HL, LH, HH}, follow the scaling relation [9]

|Wg,(j)f(l‘m)| _ Km2j((1m+1)’ (3)
for s € {HL, LH} and
‘Ws(j>f(1‘7n)‘ — KmQj(Merl)7 (4)

for s =HH. By contrast to Chang et al., the SVP parameters
(that is, the scaling constant K,, and local Lipschitz regu-
larity «m,) are estimated in all the three high-pass subbands
by linear regression using (3) and (4), instead of (1).

The initially estimated HR subbands are iteratively re-
fined in the second phase by projection onto three convex
sets. The sets are defined by similar properties as in the orig-
inal algorithm, with a modification in the definition of the
first set that the subbands must belong to the corresponding
subspace of directionlets, instead of the 3-band WT.

Notice that the two SVP parameters that correspond to
the same location estimated in different high-pass subbands
are correlated, since they are produced by the same SVP. The
relation among these values can be used to further improve

Table 1: Numeric results of interpolation of 3 test images
using 3 methods: bicubic interpolation, wavelet-based inter-
polation and the interpolation based on directionlets.

Lena Baboon | Star chart
Bicubic 26.80dB | 20.27dB 13.57dB
WT 28.59dB | 20.97dB 15.95dB
Directionlets | 29.65dB | 20.93dB 16.51dB

the estimation of the HR high-pass subbands. However, this
issue will be addressed in future work.

The estimated HR subbands are transformed back to the
original domain using the inverse directionlets and the com-
puted directional map. Notice also that the same transform
is used in both the computation of directional map (as ex-
plained in Section 3.1) and the initial estimate of the high-
pass subbands and, thus, this transform can be applied only
once. This fact is exploited to reduce the overall compu-
tational complexity to the same order as the complexity of
the initial interpolation algorithm. The entire interpolation
algorithm is summarized next.

Step 1: Directional map

e Apply directionlets to each 16 x 16 block using the pairs
of transform directions from the set D and compute the
optimal pair of directions using (2),

Step 2: Initial estimate

e Compute the low-pass subband at HR using bicubic in-
terpolation,

e Determine the SVP in the high-pass subbands using the
transform along the directions computed in Step 1,

e Estimate the SVP parameters,

e Compute the corresponding high-pass subbands at HR,

Step 3: Tterative POCS (repeat this step K times)?

e Project all the subbands onto the directionlets subspace
using a pair of inverse and forward transform,

e Keep the subsampled version of the low-pass subband
consistent with the LR image,

e Keep the SVP parameters in the high-pass subbands con-
sistent with the initial edge estimation,

Step 4: Reconstruction

e Apply one step of inverse directionlets on the estimated
subbands using the directional map computed in Step 1.

4. EXPERIMENTAL RESULTS

The performance of the new method is compared to the per-
formance of both the bicubic interpolation and the previous
locally adaptive wavelet-based method from [7] applied to
three test images: Lena, Baboon and Star chart. To com-
pare the interpolated images to the reference ones in terms
of peak signal-to-noise-ratio (PSNR), the original HR im-
ages are first low-pass filtered and subsampled to obtain the
LR versions and, then, the resulting images are interpolated
back to HR. Furthermore, to emphasize the difference in the
visual quality obtained using different interpolation meth-
ods, the images are interpolated twice, that is, the resolution
at HR is 4 times larger than that at LR. Since the original
source code for the method in [7] is not available, it has been
rewritten and the obtained PSNRs are approximately close
to the results shown in the original paper.

The LR versions of the images Lena and Baboon have
128 x 128 pixels, whereas the LR version of the image Star
chart has 256 x 256 pixels. The target HR versions have
512 x 512 and 1024 x 1024 pixels, respectively. The images

2The results shown in Section 4 are obtained for K = 5.
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Figure 4: The image Lena is interpolated from 128 x 128 to 512 x 512 pixels using 3 methods. A magnified area of the
image is shown to compare the visual quality of the interpolated images. (a) A detail of the original image, which is shown
in Fig. 3(a). (b) Bicubic interpolation. (c) Wavelet-based interpolation. (d) Interpolation with directionlets. The novel
method based on directionlets provides the sharpest reconstructions of edges, especially when dominant orientations are

neither horizontal nor vertical.
i || N !'
f | !}

(a) (b) (c) (d)

Figure 5: The image Baboon is interpolated from 128 x 128 to 512 x 512 pixels using 3 methods. A magnified area of
the image is shown. (a) A detail of the original image shown in Fig. 3(b). (b) Bicubic interpolation. (c) Wavelet-based
interpolation. (d) Interpolation with directionlets. Notice that the visual quality of the image interpolated using the novel
method is improved as compared to the standard one, even though the numeric improvement is negligible (as presented in

(a) (b) (c) (d)

Figure 6: The image Star chart is interpolated from 256 x 256 to 1024 x 1024 pixels using 3 methods. (a) The entire original
image with a marked area that is magnified. This area is shown in the interpolated images using (b) bicubic interpolation,
(c) wavelet-based interpolation and (d) the interpolation with directionlets. The diagonal lines are reconstructed with the
best quality using the novel method.
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are interpolated using three methods: the bicubic interpola-
tion, the wavelet-based interpolation and the method based
on directionlets. The numeric comparison of the interpola-
tion results in terms of PSNR is shown in Table 1. Notice
that the improvement in the numeric quality of interpolation
induced by directionlets is significant in case of the images
Lena and Star chart, whereas it is rather weak in case of the
image Baboon because of a complicated texture. However,
the visual quality of the interpolated images is strongly en-
hanced in all cases as compared to the results of the standard
wavelet-based method. To highlight this result, magnified
details of all the 3 interpolated images are shown in Fig. 4,
5 and 6. The edges are apparently sharper in the images ob-
tained using the novel method, especially in case when the
dominant orientation is neither horizontal nor vertical.

5. CONCLUSIONS

A novel image interpolation algorithm has been obtained
by implementation of directionlets in the previously pro-
posed locally adaptive wavelet-based method. The algorithm
adapts the transform directions to locally dominant direc-
tions across the image domain and successfully captures ori-
ented features. Moreover, it extracts the information about
these features (location, amplitude and Lipschitz regular-
ity) from the low-resolution image and uses these parameters
to generate a high-resolution version with preserved sharp-
ness. The new method outperforms the previous methods
in terms of both numeric and visual quality of interpolated
images. The performance of the method can be even further
improved by exploiting the relation of the extracted para-
meters across the wavelet subbands, which is left for future
work.
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