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ABSTRACT

We propose a novel and efficient method for on-line detection
of network anomalies that lead to changes in Internet traffic
such as (distributed) denial-of-service ((D)DoS) attacks. Our
method consists in a data reduction stage based on record fil-
tering followed by a nonparametric change-point detection
test based on U-statistics. With such a method, we can ad-
dress massive data streams and provide an on-line anomaly
detection as well as the source and destination IP addresses
involved. We apply this algorithm to some Internet traf-
fic generated by France-Télécom Internet Service Provider
(ISP) in the framework of the ANR-RNRT OSCAR project.
This approach called TopRank in the following is very at-
tractive since it enjoys a low computational cost and is able
to detect several types of anomalies such as TCP/SYN flood-
ing, UDP flooding, PortScan and NetScan with a low false
alarm rate.

1. INTRODUCTION

Recent attacks on very popular web sites such as Yahoo,
eBay and CNN leading to a disruption of services to users
have triggered an increasing interest for network intrusion
detection. Typical examples include Denial of Service (DoS)
attacks – a network-based attack in which agents intention-
ally saturate system resources – their distributed version
(DDoS), worm-based attacks and Address Resolution Pro-
tocol (ARP) Man In the Middle (MIM) attacks. Since the
aforementioned attacks represent serious threats for com-
puter networks, finding tools such as Intrusion Detection
Systems (IDS) for ensuring the defense against them has be-
come a major concern.

Existing IDS to deal with DoS attacks such as TCP
(Transmission Control Protocol) SYN flooding, UDP flood-
ing, PortScan and NetScan are based on two different ap-
proaches.

The first one is a signature-based approach which com-
pares the observed patterns of the network traffic with known
attack templates. If the attack belongs to the set of known
attacks listed in the database then it can be successfully de-
tected: Bro [12] and Snort [13] are two examples of such
IDS. The obvious limitation of such an approach is the re-
quirement that the signature of the anomaly has to be known
in advance.

The second one is based on statistical tools which do not
require any prior information about the kind of anomalies we
are faced with. As a consequence, this approach can detect
anomalies which do not belong to a prescribed database. A
training stage is nevertheless required in order to learn the
characteristics of legitimate traffic. Indeed, an alarm will be
launched each time a deviation in the parameters of the stud-
ied traffic is observed with respect to the learned legitimate
traffic. The latter approach uses the fact that anomalies in

the network traffic lead to abrupt changes in some observa-
tions which have to be chosen according to the type of attacks
(DoS, worm, MIM,...) we are looking for. These changes
occur at unknown time instants and have to be detected as
soon as possible. Detecting an attack in the network traffic
can thus be described as a change-point detection problem
which is a classical issue in statistics. The detection can ei-
ther be performed with a fixed delay (batch approach) or with
a minimal average delay (sequential approach). We refer to
[1, 2, 4] and the references therein for a complete overview
of the existing methods in statistical change-point detection.

The most widespread change-point detection technique
in the field of network anomaly detection is the cumulated
sum (CUSUM) algorithm which was first proposed by Page
in [11]. The CUSUM algorithm has already been used by
[17] and [14] for detecting DoS attacks of TCP/SYN flood-
ing type. Such an attack consists in exploiting the TCP’s
three-way hand-shake mechanism and its limitation in main-
taining half-open connections. More precisely, when a server
receives a SYN request, it returns a SYN/ACK packet to the
client. Until the SYN/ACK packet is acknowledged by the
client, the connection remains half-opened for a period of
up to the TCP connection timeout. A backlog queue is built
in the system memory of the server to maintain all half-open
connections, thus leading to a saturation of the server. In [17]
and [14], the authors use the CUSUM algorithm to look for a
change-point in the time series corresponding to the sum of
received SYN packets and to the difference of the number of
SYN and FIN packets respectively. With such an approach
it is only possible to raise an alarm when a change occurs
in the aggregated series but it is impossible to pick out the
malicious flow. In [15] and [16], a multichannel detection
procedure is proposed. This is a refined version of the algo-
rithm previously used: it detects changes which occur in a
channel and which could be obscured by the normal traffic in
the other channels if global statistics were used.

Operators seeking to understand and manage their net-
works are increasingly looking at network-wide traffic flows
using tools like Netflow [3]. Since each flow is characterized
by 5 fields: source and destination IP addresses, source and
destination ports and protocol number, a database of size up
to 2104 has to be stored and studied. In order to detect anoma-
lies over time of such massive data streams, dimension reduc-
tion techniques have to be used. Two main approaches have
been proposed: random aggregation of IP flows (sketches)
[7], [9] and PCA (Principal Component Analysis) techniques
[8].

In this paper, we propose an intrusion detection method
for identifying DoS and DDoS attacks in Internet traffic
such as: TCP/SYN flooding, UDP flooding, PortScan and
NetScan. Recall that UDP flooding is an attack similar to
SYN flooding which aims at saturating the memory of a des-



tination IP address by sending a lot of UDP packets. The
PortScan consists in sending TCP packets to each port of a
machine to know which ones are opened. For the NetScan,
a source IP address sends packets to a group of machines.
Since we aim here at addressing massive data streams, the
first stage of our approach is a data reduction step. It is
then followed by a statistical batch nonparametric change-
point test using rank statistics. A record filtering method is
used as a reduction stage in the algorithm TopRank that we
propose. This method is thoroughly described in Section 2.
The corresponding algorithm has been implemented in C and
applied to real datasets corresponding to some Internet traf-
fic provided by France-Télécom within the framework of the
ANR-RNRT OSCAR project to detect network anomalies of
the previous types. The results are reported in Section 3.
The method that we propose can be used to analyze a large
amount of data and to provide an on-line anomaly detection
algorithm as well as the source and destination IP addresses
involved.

2. DESCRIPTION OF THE TOPRANK
ALGORITHM

In the following, we describe the TopRank algorithm which
can detect different types of DoS attacks such as TCP/SYN
flooding, UDP flooding, PortScan and NetScan on-line. The
raw data used by the TopRank algorithm consist in Netflow
type data collected at several points of the Internet network.
They include the source and destination IP addresses, the
source and destination ports, the start time and the end time
of the flow as well as the protocol and the number of ex-
changed packets. Depending on the type of the attack, some
time indexed traffic characteristics are of particular interest
and have to be processed for detection purposes. For in-
stance, in the case of the TCP/SYN flooding, the quantity
of interest is the number of TCP/SYN packets received by
each destination IP address per unit of time.

In the following, we propose to use a batch approach.
More precisely, we analyze the traffic in successive obser-
vation windows each having a duration of P × ∆ seconds.
We take a decision concerning the presence of potentially
attacked IP addresses at the end of each observation win-
dow and identify the IP addresses involved. The parameter ∆
corresponds to the smallest time unit used for building time
series from Netflow type data. The integer P is the length
of the time series within each window. More precisely, the
time series are built as follows: in the case of the TCP/SYN
flooding for instance, we shall denote by N∆

i (t) the number
of TCP/SYN packets received by the destination IP address
i in the sub-interval t of size ∆ seconds. The correspond-
ing time series of the destination IP address i will thus be
(

N∆
i (t)

)

1≤t≤P
. In the case of UDP flooding, N∆

i (t) will be

the number of UDP packets received by the destination IP
address i in the sub-interval t of size ∆ seconds. For the
PortScan, we shall take as N∆

i (t) the number of different re-
quested destination ports of the destination IP address i in the
sub-interval t of size ∆ seconds and for the NetScan, it will
be the number of different requested destination IP addresses
by the source IP address i.

A crude solution for detecting such kinds of anomalies

consists in finding a change in the time series
(

N∆
i (t)

)

1≤t≤P

for all the possible IP addresses i encountered in each obser-
vation window of size P×∆ seconds. Since the number of

IP addresses can be huge, up to 232, we are faced in prac-
tice with massive data streams implying a construction and
an analysis of several thousands of time series even for short
observation periods (around 1 minute). To overcome this dif-
ficulty, a data reduction stage must precede the change-point
detection stage. The data reduction stage is performed in the
TopRank algorithm using a record filtering which will be fur-
ther described below. As for the change-point detection step,
we used nonparametric rank tests which do not require any
prior information concerning the distribution of the observed
traffic.

More precisely, the TopRank algorithm can be split into
three steps described hereafter. Note that the following
processing is performed in each observation window of
length P×∆ seconds and that all the stored data are cleaned
up at the end of each observation window. Note also that
we only describe the algorithm for the TCP/SYN flooding
since the adaptation to the other kinds of attacks previously
quoted is straightforward given the previous remarks.

Step 1: Record filtering

In each sub-interval of duration ∆ seconds of the ob-
servation window, we select, for instance in the case of
TCP/SYN flooding, the M destination IP addresses which
have received the largest number of TCP/SYN packets. The
indexes of these destination IP addresses are rearranged

in such a way that: N∆
i1
(t) ≥ N∆

i2
(t) ≥ ·· · ≥ N∆

iM
(t). In

the following, T∆
M(t) = {i1, . . . , iM}. In other words, for

all t ∈ {1, ...,P}, #T∆
M(t) = M and for all i ∈ T∆

M(t) and

j /∈ T∆
M(t), N∆

i (t) ≥ N∆
j (t).

Step 2: Creation of censored time series

In this stage, we shall only focus on the destination IP
addresses which belong, at least once in the observation win-
dow, to the set of the M′ IP addresses which have received
the largest number of TCP/SYN packets, where 1 ≤M′ ≤ M.
This means that we shall construct censored time series only
for these destination IP addresses. More formally, we shall
only focus on the IP addresses i belonging to

I =
P
⋃

t=1

T∆
M′(t) .

Then, the corresponding time series are built as follows. For
each i ∈ I, the value of the time series in the sub-interval t
of length ∆ seconds will be denoted by X∆

i (t) and will be de-

fined in the following way. The value of X∆
i (t) will be equal

to the number of TCP/SYN packets received by the desti-
nation IP address i if this destination IP address belongs to

the set T∆
M(t). Otherwise X∆

i (t) will be equal to the number
of TCP/SYN packets received by the M-th most requested
destination IP address of the sub-interval t of size ∆. By con-
struction, the time series are censored. More formally, for
each destination IP address i ∈ I, the corresponding observa-
tions are:

(Y∆
i (t))1≤t≤P = (X∆

i (t),δ∆i (t))1≤t≤P



where, for each t ∈ {1, ...,P},

X∆
i (t) =

{

N∆
i (t), if i ∈ T∆

M(t)
Min j∈T∆

M(t) N j(t), otherwise,

δ∆i (t) =

{

1, if i ∈ T∆
M(t)

0, otherwise.

The value of δ∆i (t) tells us if the corresponding

value X∆
i (t) has been censored or not. Observe that,

by definition, δ∆i (t) = 1 implies X∆
i (t) = N∆

i (t) and

δ∆i (t) = 0 implies X∆
i (t) ≥ N∆

i (t).

Step 3: Change-point detection test

In [6], a nonparametric statistical change-point detection
method is proposed to analyze censored data as well as a way
of computing its p-values. It is a nonparametric rank test us-
ing a score function (denoted by A in the following) which
was first introduced by [5] and [10] in their generalization of
Wilcoxon’s rank test for censored data. We apply this test to
each time series created in Step 2. Note that each of these
time series is removed when the analysis in a given obser-
vation window is complete. With such an approach, up to
M′×P time series of length P are processed in each obser-
vation window of time length P×∆ seconds.

Let us now describe further the statistical test that we
perform. This procedure aims at testing from the obser-

vations (Y∆
i (t))1≤t≤P = (X∆

i (t),δ∆i (t))1≤t≤P if a change

occurred in the time series
(

N∆
i (t)

)

1≤t≤P
for a given i ∈ I.

More precisely, if we drop the dependence on i and ∆

for convenience in the description of the test, the tested
hypotheses are:

(H0): “{N(t)}1≤t≤P are independent and identically
distributed random variables”

(H1): “There exists some r such that (N(1), . . . ,N(r))
and (N(r + 1), . . . ,N(P)) have a different distribution”.

Let us now describe the test statistic that we use. For each
s,t ∈ {1, . . . ,P}, we define:

• As,t = 1I(X(s) > X(t),δ (s) = 1)−1I(X(s) < X(t),δ (t) =
1), where 1I(E) = 1, if we are in the event E and 0, oth-
erwise,

• Us = ∑
P
t=1 As,t , s = 1, . . . ,P,

• St = (∑t
s=1 Us)/

(

∑
P
s=1 U2

s

)1/2
, t = 1, . . . ,P.

We shall use
WP = Max

1≤t≤P
|St |

as a test statistic. Since, under (H0), see [6],

WP
D

−→ ‖B‖∞ = sup
0<t<1

|B(t)|, as P → ∞,

where {B(t), t ∈ [0,1]} denotes a Brownian bridge and
D the convergence in distribution, we shall take for
the change-point detection test the following p-value:
Pval(Max1≤t≤P |St |) , where for all b > 0,

Pval(b) = P(‖B‖∞ > b) = 2
∞

∑
j=1

(−1) j−1e−2 j2b2
, b > 0 .

The last equality is given in [6]. For a given false alarm rate
α ∈ (0,1), we reject (H0) when Pval(WP) < α . In the rejec-
tion case, the change-point instant is given by

t̂P = Argmax
1≤t≤P

|St |.

3. APPLICATION TO REAL DATA

In this section, we give the results when the TopRank al-
gorithm is applied to some real Internet traffic provided by
France-Télécom within the framework of the ANR-RNRT
OSCAR project. These data correspond to a recording of
67 minutes of ADSL and P2P traffic to which some attacks
of type SYN flooding, UDP flooding, PortScan and NetScan
have been added. ’UDP flooding’ in Figure 1 displays the
total number of UDP packets as well as the number of UDP
packets received by the destination IP address attacked by
UDP flooding. ’SYN flooding’ in Figure 1 displays the total
number of SYN packets as well as the number of SYN pack-
ets received by the destination IP address attacked by SYN
flooding. ’PortScan’ in Figure 1 displays the total number of
TCP packets as well as the number of TCP packets received
by the destination IP address attacked by PortScan. Finally,
’NetScan’ in Figure 1 displays the total number of packets as
well as the number of packets sent by the source IP address
generating NetScan.
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Figure 1: Number of exchanged packets for each type of at-
tack.

From Figure 1, we can see that we are faced with massive
data streams and that the attacks are completely hidden and
thus difficult to detect.

3.1 Choice of parameters

The previous data have been addressed using the following
parameters : P = 60, ∆= 1, M = 10 and M′ = 1. With these
parameters, a decision concerning the presence of attacks is
taken every minute thus entailing an average detection de-
lay of 30 seconds. As for the choice of M′, taking M′ = 1
means that we only analyze the IP addresses i having, at least



once in an observation window, the largest N∆
i (t). Note that

the reduction stage (Step 1 of TopRank) is necessary for the
analysis of this dataset. Indeed, Figure 2 displays the number
of different destination (left) and source IP addresses (right)
each minute of the trace. Thus, applying Step 3 to each IP
addresses at each minute would not be feasible on-line.
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Figure 2: Number of IP addresses every minute.

Figure 3 displays the number of time series which are
actually built in Step 2 of TopRank after the filtering stage
of Step 1 for different values of M′ : M′ = 1, M′ = 5 and
M′ = 10 when we are interested in NetScan. This means that
we are looking for a change in the time series corresponding
to the number of destination IP addresses requested by the
source IP addresses encountered in each observation window.
Step 1 of TopRank considerably reduces the number of ana-
lyzed time series without removing the attacked IP addresses
as we shall see in the following.
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Figure 3: Number of analyzed time series every minute when
M′ = 1, M′ = 5 and M′ = 10.

3.2 Performance of the method

3.2.1 Statistical performance

First, note that with the previous choice of parameters the
attacked IP addresses have been identified when the upper
bound of the p-value α introduced in Step 3 of TopRank sat-

isfies α ≥ 10−11 for the PortScan, α ≥ 10−6 for the UDP
flooding, α ≥ 0.0006 for the SYN flooding and α ≥ 0.04 for
the NetScan.

Figure 4 displays the censored time series (Step 2 of
TopRank) of the attacked IP addresses in the case of SYN
flooding, UDP flooding and PortScan as well as the censored
time series of the source IP address generating the attack in
the case of NetScan. These time series are displayed in the
first observation window in which the algorithm detects the
anomaly of the corresponding type. We also display with a
vertical line the instant where the change is detected. The
detection time delay is equal to around 1 minute for the SYN
flooding, 5 seconds for the UDP flooding, 30 seconds for the
PortScan and 20 seconds for the NetScan.
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Figure 4: Censored time series of the attacked IP addresses.

We can see from Figure 4 that the rank test for censored
data described in Step 3 of TopRank can detect several types
of changes: sudden increase, slow increase and several types
of intensity of changes.

Figure 5 displays ROC curves corresponding to PortScan
(left) and TCP/SYN flooding (right). The x-axis of such
curves corresponds to the false alarm rate whereas the de-
tection probability is on the y-axis. More precisely, the false
alarm rate corresponds to the normalised number of different
IP addresses for which an alarm was raised whereas they do
not belong to the set of the known attacked IP addresses. The
detection probability corresponds to the normalized number
of IP addresses which have been detected by the TopRank al-
gorithm and which belong to the set of attacked IP addresses.
Normalization in the case of the false alarm rate is obtained
by dividing the number of false alarms in the sense described
above by the number of analyzed IP addresses which are not
assumed to be attacked. In the case of PortScan, it is equal
to 1922 for the whole trace and to 1867 for SYN flooding.
For detection probability, normalization consists in dividing
the number of well detected IP addresses by the number of
attacked IP addresses.

To compute the false alarm rate and detection probabil-
ity, we have considered that the attacked IP addresses were
only those for which an attack was generated but it is possible
that the underlying ADSL traffic contains some attacks. Fig-
ure 6 displays the censored time series of some IP addresses
which were considered as false alarms in the computation of
the ROC curves in the case of the SYN flooding as well as the
time instant where a change has been detected (vertical line).



0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
e
te

c
ti
o
n
 p

ro
b
a
b
ili

ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
e
te

c
ti
o
n

 p
ro

b
a
b
ili

ty

Figure 5: ROC curves for the PortScan (left) and SYN flood-
ing (right).

However, we think that these IP addresses could be consid-
ered as being attacked. Thus, the ROC curves are displayed
in the worst case for our algorithm.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Time (in seconds)

N
u
m

b
e
r 

o
f 
S

Y
N

 p
a
c
k
e
ts

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Time (in seconds)

N
u
m

b
e
r 

o
f 
S

Y
N

 p
a
c
k
e
ts

Figure 6: Censored time series for IP addresses considered
as false alarm.

3.2.2 Numerical performance

As we have seen, this method seems to give satisfactory re-
sults from a statistical point of view. Moreover, with M = 10,
M′ = 1, and P = 60, applying the TopRank algorithm takes
only 1 minute and 30 seconds to process the whole trace of 67
minutes, which means looking for SYN flooding, UDP flood-
ing, PortScan and NetScan, with a computer having the fol-
lowing configuration: RAM 1 GB, CPU 3 GHz. This makes
the on-line implementation of TopRank very realistic even
for more intense traffic data.

4. CONCLUSION

In this paper, we propose an intrusion detection method for
identifying DoS and DDoS attacks in Internet traffic: the
TopRank algorithm based on a record filtering technique
followed by a nonparametric rank test. The TopRank
algorithm turns out to be a very efficient technique to detect
several types of flooding attacks both from a statistical and
numerical point of view. More precisely, the main attractive
features of the TopRank algorithm are twofold. First, it
is able to adapt to various types of traffic on account of
the nonparametric property of the test stage. Secondly, its
computational simplicity and efficiency make its on-line
implementation feasible. This is already the case: our algo-
rithm is integrated in an experimental network developed by
France-Télécom R&D and the other partners involved in the
ANR-RNRT OSCAR project and the results obtained with
our method seems to be very promising.
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