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ABSTRACT
We study linear minimum mean square error (LMMSE) fil-
ters for estimating a nonstationary second-order continuous-
time stochastic process from a noisy observation. The equa-
tion for the optimal filter is treated in the Weyl symbol do-
main, and the involved Weyl symbols are assumed to belong
to certain modulation spaces. By discretizing this equation
using a Gabor frame we transform it into a matrix equation
and obtain a formula for the filter by matrix inversion. The
inverse matrix has off-diagonal decay at a rate that increases
the more underspread the process is.

1. INTRODUCTION

The problem of denoising continuous-time second-order
complex-valued stochastic processes has been given consid-
erable attention in the literature [6, 16, 18, 19]. The general-
ity of the problem definition makes it interesting to a wide
research community. A common assumption is that we ob-
serve a zero-mean process y, which is a noisy measurement
of a zero-mean process of interest x (the “message”). The
second-order statistics are given by the autocovariance func-
tions ry(t,s) = E(y(t)y∗(s)) and rx(t,s) = E(x(t)x∗(s)) and
the crosscovariance function rxy(t,s) = E(x(t)y∗(s)). Often,
the observation is assumed to be of the form

y(t) = x(t)+n(t), (1)

where the additive noise n is uncorrelated with x.
A classical framework is to assume that the processes x

and n are wide-sense stationary (WSS). There are two good
reasons to study this restriction: (i) it is an accurate physical
model in many engineering applications, and (ii) there exists
a well developed mathematical theory for WSS processes.
In particular, the Wiener filter, discovered independently by
Wiener [19] and Kolmogorov [13], is the celebrated optimal
solution for a causal linear time-invariant filter kernel h that
minimizes the mean square error (MSE) E|h ∗ y(t)− x(t)|2.
Here t is fixed arbitrary since the MSE is time-independent
in the WSS case. If the requirement that the filter be causal is
relaxed, the optimal filter, sometimes called the non-causal
Wiener filter, is easier to compute. In the frequency domain
it is

Fh(ξ ) =
F rxy(ξ )
F ry(ξ )

=
F rx(ξ )

F rx(ξ )+F rn(ξ )
, (2)

where F denotes Fourier transformation and F rx is the
nonnegative spectral density of x. The second equality in

This work was supported by the Australian Research Council (ARC)
under the Discovery Project DP0664365.

(2) holds in the signal-plus-noise case (1). It has an intu-
itively appealing interpretation: the filter attenuates frequen-
cies where the noise is strong compared to the signal of in-
terest x.

Although very useful, the WSS assumption has its limi-
tations and much research efforts have been devoted to study
and solve the optimal filtering problem in the case when x
and/or y are nonstationary second-order processes [6, 16].
The optimal linear filter kernel is then time-varying and de-
pends on two variables. A research goal has been to gener-
alize the formula (2) to nonstationary processes. Then the
frequency domain must be generalized to the time-frequency
domain. The spectral density function F rx of a WSS pro-
cess has a natural generalization in the Wigner–Ville spec-
trum (WVS) [4]

ρx(t,ξ ) =
∫

R
rx(t + τ/2, t− τ/2)e− jτξ dτ, (3)

and the cross–WVS ρxy is defined analogously. The corre-
sponding definition for the filter kernel h is called the Weyl
symbol,

ρh(t,ξ ) =
∫

R
h(t + τ/2, t− τ/2)e− jτξ dτ. (4)

In the WSS case ρx is independent of t and reduces to F rx
and ρh reduces to Fh. Hlawatsch et al. [10] have found that
the approximation of the Weyl symbol of the optimal filter

ρh(t,ξ )≈ ρxy(t,ξ )
ρy(t,ξ )

=
ρx(t,ξ )

ρx(t,ξ )+ρn(t,ξ )
(5)

is reasonably accurate in the case of underspread processes
x and y. Again, the second identity in (5) corresponds to
the signal-plus-noise case. The concept of underspreadness
is defined as a condition on the expected ambiguity function
(EAF)

ax(ν ,τ) =
1

4π2

∫∫

R2
ρx(t,ξ )e j(tν+ξ τ)dtdξ . (6)

When ρ is a symbol of a more general operator, i.e., not
necessarily a covariance operator, then a is called spread-
ing function [10]. A process x is said to be underspread if
ax is “effectively” compactly supported in a box centered at
the origin of area ¿ 1 [10, 15]1. This means that the support
may be larger than the box, but the fraction of energy outside

1Since we use a slightly different normalization of the Fourier transform
and ax, the value 1 in [10, 15] corresponds to 2π in our setup.
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the box, or certain moments of the spreading function, are
small.2

Since the EAF of an underspread process is concentrated
around the origin, its Fourier transform, the WVS ρx, is
smooth to some degree.

Our goal in this paper is to find a precise version of
the formula (2) for nonstationary processes. Our require-
ments will involve a condition that resembles underspread-
ness, which will be discussed in Section 6. We will express
the formula in terms of the Gabor coefficients for ρh, ρxy and
ρy, which means that we work in the four-dimensional phase
(time-frequency) space of the time-frequency plane.

2. THE LMMSE FILTER EQUATION

Let x and y be second-order zero-mean continuous-time, real-
valued, or, if complex-valued, jointly proper3 stochastic pro-
cesses defined on R. Let the auto-covariance functions be
denoted by rx and ry, and the cross-covariance function by
rxy(t,s) = E(x(t)y∗(s)). Suppose y(t) is an observation of
a message x(t). To recover x(t) we linearly filter y(t) us-
ing a kernel function h to get an estimate of x(t), denoted
x̂(t), [6, 16, 18, 19]

x̂(t) =
∫

R
h(t,s)y(s)ds. (7)

Define the MSE at time t by E|x̂(t)−x(t)|2. To minimize the
MSE for a fixed arbitrary t we need to solve for h the integral
equation [6, 16]

rxy(t,s) =
∫

R
h(t,u)ry(u,s)du, s, t ∈ R. (8)

This equation may be derived from the principle of orthogo-
nality

x(t)− x̂(t)⊥ y(s), s ∈ R, (9)

in the Hilbert space of second-order stochastic variables.
If we treat h, rxy and ry as kernels for integral operators,

then the equation (8) reads

rxy = hry, (10)

which means that the operator corresponding to the kernel
rxy is the composition of the operators corresponding to the
kernels h and ry.

3. THE WEYL SYMBOL, THE WEYL PRODUCT
AND MODULATION SPACES

In this section we reformulate the equation (8) in the time-
frequency domain.

Let ρ be a function of two variables. The formula

(ρw f )(x) = (2π)−1
∫∫

R2
ρ

(
x+ y

2
,ξ

)
e j(x−y)ξ f (y)dydξ

(11)

2Apart from this qualitative description there also exists an exact defi-
nition of underspread, which is mainly used for operators rather than pro-
cesses. An operator whose spreading function has compact support in a box
centered at the origin is underspread if the box has area not greater than 2π .
It is overspread if the area is greater than 2π [14].

3This means that E(x(t)x(s)) = E(y(t)y(s)) = E(x(t)y(s)) = 0 for all
t,s ∈ R.

defines a transformation of f , which has integral kernel

k(x,y) = (2π)−1
∫

R
ρ

(
x+ y

2
,ξ

)
e j(x−y)ξ dξ

= F−1
2 ρ

(
x+ y

2
,x− y

)
,

(12)

where F−1
2 denotes inverse Fourier transformation in the

second variable. The function ρ is called the Weyl symbol of
the operator ρw. Since k(x+ y/2,x− y/2) = F−1

2 ρ(x,y) ac-
cording to (12), one can go backwards from operator kernel
to symbol via (4). The Weyl calculus treats the correspon-
dences between the symbol ρ and the operator ρw and has
been developed to a very rich mathematical theory for partial
differential equations and time-frequency analysis [5, 7, 12].
There are also other ways to create a map from symbol to
operator, most notably the Kohn–Nirenberg correspondence.
These kinds of operators, defined by a symbol function, are
called pseudodifferential operators.

When we compose two operators formulated as Weyl
operators, we may translate the composition to the symbol
level. That defines the Weyl product # by

ρw
1 ρw

2 = (ρ1#ρ2)w.

On the Weyl symbol level, the equation for the filter (10) thus
reads

ρxy = ρh#ρy. (13)

In order to discuss modulation spaces, we first define the
short-time Fourier transform (STFT). Let f be a function
defined on the time-frequency plane R2. A time-frequency
variable is denoted by a capital letter like X = (x1,x2) ∈ R2.
We denote the translation operator by TX f (Z) = f (Z−X),
the modulation operator by MY f (Z) = e2 jσ(Y,Z) f (Z), and the
time-frequency shift operator, defined by X ,Y ∈ R2, as

(Π(X ,Y ) f )(Z) = e2 jσ(Y,Z) f (Z−X) = MY TX f (Z). (14)

We use a slightly unusual form of the modulation operator,
where σ(X ,Y ) = σ((x1,x2),(y1,y2)) = y1x2− y2x1 denotes
the symplectic form [5]. The STFT [5,7] of f with respect to
a window function g is defined by

Vg f (X ,Y ) = 〈 f ,Π(X ,Y )g〉, (15)

where 〈·, ·〉 denotes the inner product on L2(R2). It gives
a description of f as a function of the time-frequency vari-
able (X ,Y )∈R2⊕R2. Note that (X ,Y ) is the time-frequency
variable corresponding to the “time” variable X ∈ R2.

The weighted modulation spaces [2, 7] defined on R2

are defined by Mp,q
m (R2) = { f ∈S ′(R2); Vg f ∈ Lp,q

m (R4)},
p,q ∈ [1,∞], where Lp,q

m (R4) is the weighted mixed-norm
space of all functions h : R4 7→ C such that

‖h‖Lp,q
m

=
(∫

R2

(∫

R2
|h(X ,Y )m(X ,Y )|pdX

)q/p
dY

)1/q
< ∞.

Here the weight m is assumed to satisfy certain technical con-
ditions [7]. In particular it is v-moderate, i.e. m(X +Y ) ≤
Cm(X)v(Y ), X ,Y ∈ R4, for another weight v. In this setup v
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is a nondecreasing weight like v(X) = (1 + |X |2)s/2, s ≥ 0,
which allows m to be either decreasing or increasing within
certain boundaries defined by v. If m ≡ 1 then we denote
Mp,q(R2) = Mp,q

m (R2) and Mp
m = Mp,p

m .
The modulation spaces increase with the indices as

M1
m(R2)⊆Mp,q

m (R2)⊆Mr,s
m (R2)⊆M∞

m(R2), (16)
1≤ p≤ r, 1≤ q≤ s,

and they shrink when the weight increases,

m1 ≤Cm2, C > 0 =⇒ Mp,q
m2

(R2)⊆Mp,q
m1

(R2). (17)

The modulation spaces simultaneously quantify the asymp-
totic decay of a tempered distribution f ∈S ′(R2) in the time
and frequency variables. The functions in the small modula-
tion space M1(R2), also called Feichtinger’s algebra [7], are
continuous and well concentrated in both time and frequency,
whereas the large space M∞(R2) contains less regular objects
such as periodized Dirac distributions.

We shall use in particular the Sjöstrand space M∞,1
w (R2)

with a weight w(X ,Y ) = w(Y ) that depends on Y only and
is nondecreasing. This space plays a special role in the the-
ory of pseudodifferential operators [7, 9]. The functions in
M∞,1

w (R2) are bounded and continuous but generally lack
higher-order smoothness.

We will need the following result concerning the Weyl
product acting on modulation spaces defined on R2, which is
a special case of results in [11]. Define the family of weight
functions vs(X ,Y ) = 〈Y 〉s where 〈X〉= (1+ |X |2)1/2 and s ∈
R. If s≥ 0 and |u| ≤ s then

‖ρ1#ρ2‖Mp,1
vu (R2) ≤C‖ρ1‖Mp,1

vu (R2)‖ρ2‖M∞,1
vs (R2), C > 0,

(18)
i.e. if ρ2 ∈M∞,1

vs (R2) then Weyl multiplication from the right
is a bounded transformation on Mp,1

vu (R2) for all p ∈ [1,∞]
and all u such that |u| ≤ s.

4. GABOR FRAMES FOR MODULATION SPACES

Let g be a window function defined onR2 and let Θ⊂R4 be a
lattice, i.e. a set of the form Θ = {(an,bk)}n,k∈Z2 , determined
by the positive real numbers a and b. We use the convention
to denote elements in such a lattice by boldface Greek letters.
Its components are denoted by the corresponding letter with-
out boldface, with and without a prime symbol. For example,
ΛΛΛ = (Λ,Λ′) ∈ Θ, Λ = an, Λ′ = bk, n ∈ Z2, k ∈ Z2. The pair
(g,Θ) gives rise to a Gabor frame for L2(R2) [1, 7], consist-
ing of the collection of functions {Π(ΛΛΛ)g}ΛΛΛ∈Θ, if there exists
0 < A≤ B < ∞ such that

A‖ f‖2
L2 ≤ ∑

ΛΛΛ∈Θ
|〈 f ,Π(ΛΛΛ)g〉|2 ≤ B‖ f‖2

L2 , f ∈ L2(R2).

A frame does, in general, not consist of orthogonal functions.
The Gabor frame operator S = S(g,Θ), is defined by

S f = ∑
ΛΛΛ∈Θ

〈 f ,Π(ΛΛΛ)g〉Π(ΛΛΛ)g.

Any f ∈ L2(R2) has a Gabor expansion

f = ∑
ΛΛΛ∈Θ

〈 f ,Π(ΛΛΛ)g̃〉Π(ΛΛΛ)g, f ∈ L2(R2) (19)

with non-unique coefficients. Here g̃ = S−1g is the so-called
canonical dual window, which depends on g, a and b. It is
also possible to satisfy (19) with other choices of dual win-
dows [7].

Gabor theory has been generalized from the Hilbert
space L2 to modulation spaces by Feichtinger, Gröchenig
and Leinert [3, 8]. If Θ = {(an,bk)}n,k∈Z2 , g ∈ M1

v (R2)
and {Π(ΛΛΛ)g}ΛΛΛ∈Θ is a Gabor frame for L2(R2), then also
g̃ ∈M1

v (R2). We have the norm equivalence

C−1‖ f‖Mp,q
m (R2)

≤
(

∑
k∈Z2

(
∑

n∈Z2

|〈 f ,Π(an,bk)g̃〉|pm(an,bk)p
)q/p)1/q

≤C‖ f‖Mp,q
m (R2), C > 0,

(20)

and the reconstruction formula (19) holds for the whole scale
1 ≤ p,q ≤ ∞ of modulation spaces [7]. We denote the
weighted discrete lp,q(Θ) norm by ‖ · ‖lp,q

m (Θ), where it is un-
derstood that the weight function m is sampled on the lattice
Θ, as in (20). Thus, using (15), we may draw the following
conclusion from (20). We have f ∈ Mp,q

m (R2) if and only if
its Gabor coefficients Vg̃ f ∈ lp,q

m (Θ) [7]. Thus modulation
spaces admits time-frequency discretization without loss of
information.

5. RESULTS FOR THE FILTERING PROBLEM

The Weyl product is bilinear and has the continuity property
(18) when it acts on modulation spaces. Now we discretize
the equation (13) using a Gabor frame. For fixed ρy, the
Gabor coefficients for ρxy will then depend linearly on the
Gabor coefficients for ρh. The linear dependence may be
described by a matrix that depends on the Gabor coefficients
of ρy. Thanks to (18) and (20) the matrix acts continuously
on Gabor coefficient sequence spaces. By inversion of this
matrix we obtain an expression for the Gabor coefficients of
the Weyl symbol ρh of the optimal filter.

Let the window function be the Gaussian Φ(X) =
2π1/2 exp(−|X |2). Then {Π(an,bk)Φ}n,k∈Z2 is a Gabor
frame for L2(R2), and thus also for the modulation spaces
Mp,q

m (R2), if the lattice parameters satisfy 0 < ab < π [7].
Let the symbols ρxy, ρh and ρy be members of modulation
spaces so that they have the Gabor expansions

ρxy = ∑
ΛΛΛ∈Θ

cxy(ΛΛΛ)Π(ΛΛΛ)Φ, cxy(ΛΛΛ) = 〈ρxy,Π(ΛΛΛ)Φ̃〉,

ρh = ∑
ΛΛΛ∈Θ

ch(ΛΛΛ)Π(ΛΛΛ)Φ, ch(ΛΛΛ) = 〈ρh,Π(ΛΛΛ)Φ̃〉,

ρy = ∑
ΛΛΛ∈Θ

cy(ΛΛΛ)Π(ΛΛΛ)Φ, cy(ΛΛΛ) = 〈ρy,Π(ΛΛΛ)Φ̃〉.

(21)

Define the matrix

M(cy)(ΛΛΛ,ΩΩΩ) = ∑
ΓΓΓ∈Θ

M (ΩΩΩ,ΓΓΓ,ΛΛΛ)cy(ΓΓΓ), ΛΛΛ,ΩΩΩ ∈Θ, (22)
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where

M (ΩΩΩ,ΓΓΓ,ΛΛΛ)

= π1/2 exp
(

j
[
σ(Ω+Ω′+Γ−Γ′,Λ′)+σ(Ω′+Γ′,Ω+Γ)

])

× exp
(
−1

4

∣∣Ω−Ω′−Γ−Γ′
∣∣2

)

×VΦ̃Φ
(

Λ− Ω+Ω′+Γ−Γ′

2
,Λ′− Ω+Ω′−Γ+Γ′

2

)

(23)
depends on the Gaussian window Φ and its canonical dual
window Φ̃. The matrix multiplication of M(cy) and a se-
quence c defined on Θ is defined by

(M(cy) · c)(ΛΛΛ) = ∑
ΩΩΩ∈Θ

M(cy)(ΛΛΛ,ΩΩΩ)c(ΩΩΩ), ΛΛΛ ∈Θ.

We have the following results for the concepts we have intro-
duced. They are special cases of results proved in [17].

Theorem 1 Suppose s ≥ 0, |u| ≤ s, 1 ≤ p ≤ ∞, ρxy ∈
Mp,1

vu (R2), ρy ∈ M∞,1
vs (R2), and ρw

y is an invertible operator
on L2(R2). Then the matrix M(cy) is invertible on lp,1

vu (Θ),
and the Gabor coefficients of the Weyl symbol for the optimal
filter can be computed by the matrix inverse product

ch = M(cy)−1 · cxy, (24)
‖ch‖lp,1

vu (Θ) ≤C‖cxy‖lp,1
vu (Θ), C > 0. (25)

Theorem 2 Suppose the assumptions of Theorem 1 are sat-
isfied, and moreover s > 2. Then the matrices M(cy) and
M(cy)−1 have polynomial off-diagonal decay according to

|M(cy)(ΛΛΛ,ΩΩΩ)| ≤C〈ΛΛΛ−ΩΩΩ〉−t , ΛΛΛ,ΩΩΩ ∈Θ, C > 0,

|M(cy)−1(ΛΛΛ,ΩΩΩ)| ≤C〈ΛΛΛ−ΩΩΩ〉−t , ΛΛΛ,ΩΩΩ ∈Θ, C > 0,

for all t < s/2−1.

Theorem 3 Suppose the assumptions of Theorem 1 are sat-
isfied, except that ρy ∈M∞,1

w (R2) where the weight w(X ,Y ) =
e2α |Y | where α = α(a,b) is a certain constant that depends
on a and b [17]. Then the matrices M(cy) and M(cy)−1 have
exponential off-diagonal decay according to

|M(cy)(ΛΛΛ,ΩΩΩ)| ≤C exp(−α|ΛΛΛ−ΩΩΩ|), ΛΛΛ,ΩΩΩ ∈Θ, C > 0,

|M(cy)−1(ΛΛΛ,ΩΩΩ)| ≤C exp(−α ′|ΛΛΛ−ΩΩΩ|), ΛΛΛ,ΩΩΩ ∈Θ, C > 0,

where α ′ ∈ (0,α).

Theorem 1 gives a time-frequency formula for the opti-
mal filter which may be seen as a nonstationary generaliza-
tion of (2). More precisely, (24) is a formula for the Gabor
coefficients of the optimal filter’s Weyl symbol. The inequal-
ity (25) says that the Gabor coefficients for the optimal filter’s
Weyl symbol ch has at least the same summability (decay at
infinity) property as the given sequence cxy.

Since the matrix M(cy) is determined by ρy as specified
by (21), (22) and (23), the result (24) is conceptually simi-
lar to (5), where the matrix inversion in (24) is replaced by
a pointwise inversion by ρy. The solution (24) is more com-
plicated than the approximation (5), because: (i) it is formu-
lated in the time-frequency (Gabor coefficient) domain of the

Weyl symbols instead of the Weyl symbols directly, and (ii)
the inversion is not pointwise but involves the inversion of a
matrix.

However, if we make stronger assumptions on the weight
w in the requirement ρy ∈M∞,1

w (R2) as in Theorems 2 and 3,
meaning that the modulation space M∞,1

w (R2) shrinks due to
(17), we may conclude that the matrix inversion is close to a
pointwise product, since the matrices have rapid off-diagonal
decay. So under these assumptions the formula (24) is almost
a pointwise inversion, which increases its resemblance to (5).

Nevertheless, there remains a qualitative difference be-
tween the formulas, namely their domain: the formula (5)
concerns quantities defined on the time-frequency plane R2

whereas (24) concerns sequences defined on Θ⊂ R4, which
is a discretization of the phase space of the time-frequency
plane R2.

6. A PROPERTY SIMILAR TO
UNDERSPREADNESS

For the results of Theorems 1 – 3 to work, we need to as-
sume that ρy ∈ M∞,1

w (R2) for certain weights w and that the
operator ρw

y is L2(R2)-invertible. The further assumption
ρxy ∈ Mp,1

vu (R2) then implies that ρh ∈ Mp,1
vu (R2) according

to (25) and (20). We would like to understand what the con-
dition ρy ∈M∞,1

w (R2) means for the EAF ay.
Set a′(x1,x2) = 4πa(2x2,−2x1) where the EAF a is de-

fined by (6) and a symbol ρ ∈ M∞,1
w (R2). Then ρ = Fσ a′

where the symplectic Fourier transform [5] is defined by

(Fσ f )(X) := π−1
∫

R2
f (Y )e2 jσ(X ,Y ) dY.

Then, since Fσ Π(X ,Y ) f = e2iσ(Y,X)Π(−Y,−X)Fσ f
and Fσ Φ = Φ, we have, using the definition of the STFT
(15) and Parseval’s formula 〈Fσ f ,g〉= 〈 f ,Fσ g〉,

VΦρ(X ,Y ) = 〈Fσ a′,Π(X ,Y )Φ〉
= e2 jσ(X ,Y )〈a′,Π(−Y,−X)Φ〉
= πe2 jσ(X ,Y )Fσ (a′T−Y Φ)(X).

Hence, if the weight depends on the second variable only
w(X ,Y ) = w(Y ) and is even,

‖ρ‖M∞,1
w (R2) =

∫

R2
sup

X
|VΦρ(X ,Y )|w(Y )dY

= π
∫

R2
sup

X
|Fσ (a′TY Φ)(X)|w(Y )dY

= π
∫

R2
‖a′TY Φ‖Fσ L∞w(Y )dY.

The assumption ρ ∈ M∞,1
w (R2) is thus equivalent to a ∈

W (Fσ L∞,L1
w), which denotes a so-called Wiener amalgam

space [2] whose local norm is Fσ L∞(R2) and whose global
norm is the weighted integral norm L1

w(R2). Wiener amal-
gam spaces are a family of spaces that control local and
global behavior using two different norms. A function to be
measured is cut off with a translated window TY Φ and mea-
sured with the local norm, and then a global norm is com-
puted with respect to the translation parameter Y . In our case
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the local norm is Fσ L∞, which means that a may be very
“rough” (not smooth) locally. For instance δ0 ∈Fσ L∞ since
Fσ δ0 = π−1 ∈ L∞. The global norm L1

w(R2) being finite
means that a decays rapidly, at a rate which increases with
the growth of w. Hence the requirement ‖ρ‖M∞,1

w (R2) < ∞
says that the EAF a can be very irregular locally, but decays
as an L1

w function globally. This is rather similar, in a quali-
tative sense, to the description of underspreadness in [10,15]
discussed in Section 1.

In conclusion we may say that ρy ∈ M∞,1
w (R2), which

is part of the requirements for Theorems 1 – 3, may be in-
terpreted as the condition that y is underspread (in a loose
sense). The degree of underspreadness increases when the
weight w becomes more rapidly increasing.

7. CONCLUSIONS

In this paper we have obtained a time-frequency for-
mula for the LMMSE filter for nonstationary second-order
continuous-time stochastic processes. The formula expresses
the Gabor coefficients of the Weyl symbol of the filter in
terms of the corresponding quantities for the autocovariance
operator of the measured signal and the cross-covariance op-
erator between the desired and the measured signal. This
formula may be regarded as a time-frequency generalization
of the classical frequency domain formula for the WSS case.
The matrix in our formula has rapid off-diagonal decay to a
degree which increases with the degree of underspreadness
of the involved processes.
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