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ABSTRACT

Astronomical object detection is a particularly difficult but
very challenging task. Indeed, astronomical images may
contain a high noise level due to huge distance within the
Universe or to the low photon flow collected on telescope
mirrors [1]. Some astronomical objects of interest such as
Low Surface Brightness (LSB) galaxies are characterized by
a very low signal-to-noise ratio and thus are rather extracted
manually and then are sometimes lost or not detected. In this
paper, we propose an automatic approach using Mathemati-
cal Morphology, well-known for its appropriate care of spa-
tial information (shape and luminance profile of LSB galax-
ies is known). In order to be able to detect objects in noisy
environments, we propose a new morphological operator for
template matching, namely a robust hit-or-miss transform.

1. INTRODUCTION

Astronomical imaging is a particularly challenging domain
for image analysis and processing algorithms. Indeed, im-
ages are often very noisy and some tasks such as image seg-
mentation or object detection may be rather difficult since
many parameters should be taken into account simultane-
ously: shape, texture, spectral properties, doppler effect (red-
shift), large range of pixel values, but also the high noise level
and possibly the other objects present in the image. In this
paper we focus on the detection of a specific kind of faint
objects, Low Surface Brightness galaxies (LSB) [2], an ex-
ample of which is given in Figure' 1.

Since such astronomical images are characterized by
a very low signal-to-noise ratio, no automatic detection
method is widely accepted yet, and astronomers are rather
using some fully (or quite fully) manual approaches [3].
However, the large amount of data (our dataset if composed
of 18 images of 2048 x 4096 pixels with a double preci-
sion) makes the manual approach inadequate. Since noise
is one of the most important criteria to deal with LSB detec-
tion, current developments towards an automatic detection
method consists of explicit modeling of the noise, which can
been achieved through Markovian methods. Even if these
approaches help to increase the detection rate, they do not
manage to take into account the spatial distribution of bright-
ness (by means of a profile known analytically). Conversely,
morphological methods, despite their lack of explicit noise
modeling, are an interesting approach when knowledge about
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the ligthness spatial profile is available. In this article we will
show how this knowledge can be involved in a morpholog-
ical method for LSB detection, thus extending the possible
use of Mathematical Morphology for astronomical imaging
[4].

More precisely we propose to study how the hit or miss
transform, a well-known morphological operator dedicated
to template matching, can adequately tackle the problem of
object detection in noisy grayscale images. To do so, we pro-
pose a new definition using a fuzzy formulation, and apply
the proposed operator to an illustrative example: LSB galaxy
detection.

2. GRAY LEVEL HIT OR MISS TRANSFORM

The Hit or Miss Transform (HMT) is a well-known mor-
phological operator dedicated to template matching. Its re-
cent extension to grayscale images [5] allows to consider the
morphological framework as a reliable alternative to statisti-
cal approaches for template matching. In this transform, the
input image [ is scanned with two templates called structur-
ing elements (SE): while the first (foreground) SE F is used
to match the shape, the second (background) SE B is used
to match the spatial neighbourhood of this shape. The pix-
els with a local neighbouring configuration fitting the two
SEs are kept by the transform while the others are discarded.
Contrary to binary images where the HMT is easily defined,
the definition for grayscale images is more complex (in par-
ticular due to the fact that the definition of background and
foreground is not intuitive in such images).

Nevertheless, in a recent work from Naegel et al. [6], the
main solutions proposed in the literature have been reviewed
and unified. We briefly recall here these definitions using the
following notations. Let E be a digital space (e.g. E =Z")
and T be a set of gray levels. We require T to be a complete
lattice with respect to the numerical order “<”. We will next
assume that 7 = RU {4oco0, —c0} or T = Z U {400, —co}. We
denote by L and T, respectively, the lowest and greatest el-
ements of T. Let I and G be two functions of TE, the set
of functions going from a subspace of E to T. We call the
support of I (supp(!)) and dual support (supp* (1)) the set of
points where I is strictly above L and respectively under T.
Dilation & and erosion & of I by G at every point p € E are
then given by:

(I®G)(p)= sup
kesupp(G)

(I(p—k)+G(k)) 1
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Figure 1: Illustration of a Low Surface Brightness (LSB)
galaxy and comparison with an High Surface Brightness
(HSB) galaxy: (top) an image containing both objects (LSB
hardly visible) and (bottom) the image signal along a profile
line.

inf

16G)(p) =
U6 p)=, inf

(I(p+k)=G(K)) @
Finally we also define the dual G* of the function G € T* by:

G:E — T
~G(—p) 3

The Ronse operator consists in assigning the maximum
gray value where it is possible to fit both SEs:

p —

(IeF)(p)

—0Q

RHMTy5)(1)(p) = { HUSFp) 2 (25)()

“
the Soille operator returns the difference between the highest
and lowest value where it is possible to fit the SEs:

SHM T (1)(p) = max{(I & F)(p) — (I & B")(p),0}, (5)
the Barat operator measures the distance between the best

inner fit of F and the best outer fit of B (the lower is this
value the best is the fit):

BHMTip5(I)(p) = (I ®B")(p) —(I©F)(p),  (6)

and finally the Khosravi-Schaefer operator differentiates
from the others by using a single SE (here the result is always
less or equal to 0 which is reached with a perfect match):

KHMTp(I)(p) = (©F)(p)—(-19(=F))(p)
= (IeF)(p)-1eB")(p)
= —BHMTp/(I)(p) D

Nevertheless these definitions suffer from the relative in-
flexibility of morphological operators (erosion and dilation)
used to define them, making them difficult to be applied
in noisy images. Since our concern is to perform object
detection in such images in the astronomical domain, we
have evaluated how robust to noise these approaches were.
Soille’s and Ronse’s HMT noise robustness is mainly deter-
mined by the distance between the two SEs F and B, the
larger it is the more noise they can absorb but higher the
number of false positive is. In Barat e al HMT or Khosravi-
Schaefer HMT the distance between the two SEs is not im-
portant as it only results in a shift of the result. Thus the
problem of determining a good distance is transformed in a
thresholding problem. The important point is to understand
that these problems are equivalent and that all of these for-
mulations will react the same when a lot of noise is present.
None of them will deal with this case accurately.

3. AROBUST HMT

In order to ensure a better robustness to noise of the mor-
phological HMT operator, we propose to adapt the idea from
Maragos [7] for binary images to grayscale images. In the
original paper from Maragos [7], a fuzzy HMT is introduced
to continue using well defined SEs, close to each other and
performing reasonably well in noisy environment. It consists
in measuring a ratio between the number of pixels that actu-
ally fit in the SEs and the total number of pixels contained
in the SEs. Hence, instead of looking for positions where the
two SEs perfectly fit the image, it measures how well the SEs
fit the image everywhere.

To extend this proposal to grayscale images, we con-
sider that the foreground and background SEs describe re-
spectively a local lower and upper bound for the image. The
fitting process consists in measuring the ratio between the
number of pixels in the neighbourhood between these two
bounds and the total number of pixels in the area covered by
the SEs. The result is a score between 0 (no points of the
neighbourhood fit in the bounds) and 1 (all pixels of the im-
age are between lower and upper bounds). Contrary to Ronse
and Soille’s HMT where the distance between SEs F' and B
and so the global shape of the pattern has to be modified to
tolerate noise, in the proposed approach SEs can keep a well
defined shape and tolerate fluctuations due to noise.

We now assume that 7 is an infinite set of gray values
with a total ordering relation noted < (e.g. T C Z). Formally
we have to decompose the image [ and pair of SEs (F,B) as
suprema of impulses and then consider each triplet /, ', B
of impulses independently. Let i(, ) be an impulse at point
peEoflevelt€T.

t ifp=x
P ®)

VXEE, ipa) () = {oo otherwise.

For practical reason and because the positions of the im-
pulses have no influence on the following definition we write
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Figure 2: Example of application of the fuzzy hit-or-miss transform to detect an exponential profile with gaussian noise. Image
(a) represents a 1D noisy signal (SNR~ 9dB). Image (b) represents the incertitude area defined by the 2 SEs F and B. Image

(c) shows how well the pattern can fit the signal.

i for i(o ). Let us write ICy g(v)(p) the proposition “pixel
value v is comprised between F 4t and B+t at point q”, we
have

ICIIV,B (‘1) (V) — iF(q)+l <iy < iB(q)+t )
= iy By <t <iySipg (10)

A proof of equivalence between eq. 9 and 10 can be found in
[6].

Let us define S = supp(F) Usupp*(B) and card(S) the
cardinality of the set S, the proposed fuzzy HMT is then de-
fined by:

FHMTgp(I)(p) =

card{q € S|IC; s(q)(I(p+9)) }
card(S)

hence it evaluates the best ratio of pixels satisfying require-
ments of proposition 10 with SEs F' and B translated at all
possible gray levels.

However, application of this operator is not straightfor-
ward. Indeed T is theoretically an infinite and perhaps con-
tinuous set, thus it is not directly possible to determine at
which level 7 the score in equation 11 will be maximized. In
fact the interval of possible values for ¢ can be restricted quite
easily by a local analysis of pixel values. For example in Fig-
ure 2, we can estimate that upper part of our pattern should
be between gray levels 6 and 14, and this can obviously be
done by applying a simple mean filter and keep the resulting
value as an estimation of 7. One can then compute score for
different values near this estimation. This solution obviously
depends on the possibility to extract a main feature from the
pattern (for example “the peak” in Figure 2) that can be used
to perform a first and quick estimation of .

Another issue is how to determine ideal distance between
the two SEs. Indeed it can be estimated from local noise in-
formation. For example assuming that our image is corrupted
by a gaussian noise .4 (0,6?), and that we are looking for
a pattern given by function P: we can set F = P — ¢ and
B = P+ 0. Then, according to noise statistic we can expect
to have a matching score of about 68% in a correct case.

max
teT

Y

4. APPLICATION TO LSB GALAXY DETECTION

Since the discovery of the various surface brightness of
galaxies, astronomers have become more and more interested

in a way to automatically detect very faint objects in astro-
nomical images. Low Surface Brightness Galaxies (LSB)
[2] are galaxies with a central surface brightness higher than
22.5 mag.arcsec™? (the magnitude is an inverse logarithmic
scale used in astronomy because of its similarities with the
human eye behavior). Traditional method of sigma clipping
(i.e. adaptive threshold method) used commonly in astron-
omy is not able to detect such object as they are eliminated
with the background (see Figures 1 and 5(a) for LSB illus-
trative examples).

The whole process of LSB galaxies detection is decom-
posed in two steps: first, a segmentation map of interesting
objects is built, and then objects present in segmentation map
are characterized using physical criteria. Astronomers of
the CDS (Centre de Données astronomiques de Strasbourg?)
have recently developed such a tool that performs an auto-
matic characterization of astronomical objects through a 2D
galaxy model fitting [8]. The goal here is to evaluate the pro-
posed FHMT for automatically building a segmentation map
of potential LSB galaxies, complementary to other existing
works relying on Markovian approaches. The detection al-
gorithm is fully automatic and decomposed in several steps
as shown in the Figure 3.

From the main features of LSB galaxies [2], several pat-
terns of various shapes and orientations are built, thus result-
ing in a final set of 640 templates or SEs (see for example
Figure 4.) All SEs are then convolved with a gaussian kernel
of 5 x 5 pixels to reproduce the point spread function (PSF)
of the telescope (seeing and optics deformations). This is
an approximation because PSF depends of the image and the
location in the image, but this approximation is negligible in
comparison with shape uncertainties. Finally from each pat-
tern are built two SEs (background and foreground) of same
orientation and elongation, but with two brightness profiles
shifted from a distance adjusted dynamically with respect to
local noise statistic.

Because the objects we are looking for are very close
to the background in terms of photometry, we also need to
compute a precise map of the background (i.e. evaluate the
intrinsic luminosity of the sky at all points). Thus we follow
the classical approach used in astronomical imaging and ap-
ply the sigma clipping method, which consists in iteratively
thresholding the image based on the average and deviation

’nttp://cdsweb.u-strasbg.fr/
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Figure 3: Scheme of the LSB galaxy detection method. The
algorithm takes three inputs: image pixels values, image
header, and pattern limits (based on physical criteria.) The
whole procedure is automatic.
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Figure 4: Example of SEs obtained with a variation of orien-
tation (left) and of elongation (right) convolved with a gaus-
sian point spread function.

statistical measures [9].

Next the original image is preprocessed with a median
filter to reduce noise. Filtered image, background map, and
pattern set are then used to calculate FHMT. Estimation of
the best gray level ¢ for vertical translation of SEs is done
using a median filter (5 x 5). We translate foreground (resp.
background) SE to local background level and stretch it so
that its highest value is t — o (resp. ¢ 4+ ¢) with ¢ the local
deviation of noise. Matching scores between each pattern
and median filtered image is then computed and the best one
is kept as the result (Figure 5(b)).

In the next step, the score map is binarized using a thresh-
old. The threshold value offers a good tuning option and was
determined to minimize false negative rate and, with less im-
portance, minimize false positive rate. We found that a score
of 80% offers a good compromise. The use of the same
threshold for every observation is not a problem. As all pa-
rameters of the algorithm are set automatically according to
observation parameters and statistics, the score gives an ab-

solute measure which is independent of the observation.

Once we have a binary map, we need to reconstruct the
final map. To do this, each pixel of the binary map is dilated
by the support of the pattern that gives the maximum score
in this position (Figure 5(c)).

It is very important for astronomers to know the detec-
tion limits of the algorithm they are using. This information
is used to determine the statical bias of their conclusions due
to selection effects of the algorithm. First, some experiments
were performed to check the method accuracy on simulated
dataset designed with astronomers of the CDS to ensure valid
physical properties of the objects and images. We have ob-
served that the method is able to detect LSB galaxies with a
low SNR (~ 0dB.)

Next the FHMT operator was applied on a test set of 16
blue band (a filter centered at wavelength of 4500 Angstrém
corresponding to blue color is used) images of 2048 x 4096
pixels coming from the INT Wide Angle Survey’. The
dataset covers the Virgo cluster which has the advantages to
be close to our Galaxy and in a relatively sparse area of the
sky. Moreover LSB galaxies population in this survey has
already been studied by astronomers [3], which gives us a
reference catalog to evaluate our results. The algorithm has
been run over the whole dataset and segmentation maps were
used as entry for the CDS characterization tool DetectL.SB.
At the end of the process, this tool provides HTML files de-
scribing potential LSB galaxies found and XML catalogs in
the VOTable standard [8]. A full analysis of the result for two
images was performed in collaboration with an astronomer.
Reference catalog contains 9 LSB galaxies in these fields.
The algorithm proposed 23 candidates. It found 6 objects
of the reference catalog and provided 8 new LSB galaxies.
Spurious detections were mainly due to artifacts created by
two close sources (when wings of two close objects inter-
sect, they locally create an artificial raise of luminosity) or
very distant galaxies (galaxy’s brightness is then decreased
by absorption of intergalactic environment). That leads to a
total of 17 interesting objects for the 2 images. The recall
of the method is then 0.82 and the precision is 0.6. One can
note that the 3 LSB galaxies missed from the reference cat-
alog were correctly segmented by FHMT but were rejected
by the characterization algorithm. A comparison of the new
catalog for the whole set of 16 images with the existing one
gives us a recovery rate of 87% and several new candidates.
These candidates have now to be analysed by astronomers’
community before any conclusion can be drawn on them. It
will allow to perform a comparison with other approaches
such as the Markovian one [8].

S. CONCLUSION

We have addressed the peculiar problem of object detection
in very noisy environment using the morphological HMT.
As an alternative to statistical approaches which accurately
model the noise information but sometimes fail to deal cor-
rectly with shape knowledge, we believe the morphological
HMT is a reliable solution as long as it can deal with noisy
images. We have studied existing formulations of HMT and
observed that they were not adapted to the case of noisy im-
ages, thus we proposed a formulation of a robust HMT. Fol-
lowing a fuzzy framework, it relies on two structuring ele-
ments: the foreground and the background one and consists

3http://www.ast.cam.ac.uk/~rgm/int_sur/
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Figure 5: Application of FHMT to LSB detection, easy (top) and hard (bottom) cases. From left to right: contrast-stretched
view of the original image of 512 x 512 pixels with an LSB galaxy at center, score map obtained after application of FHMT, and
final map containing different classes proportional to the object luminosity allowing deblending capabilities for overlapping

object having different luminosities.

in measuring the ratio of the image area that fit the SEs com-
pared to the total area covered by the SEs.

We have described how it can be applied to a real and
hard case in astronomical images: the automatic detection
of low surface brightness galaxies. Our results have been
analysed by an astronomer and confirmed that FHMT is suit-
able for pattern matching at very low SNR. Thereby the field
of application of morphological HMT has been extended to
very noisy images for which statistical approaches are gen-
erally preferred. The process we described can be easily
adapted for pattern matching in other domains such as radar
imaging. Moreover, in case of noisy multispectral data, the
proposed operator should be extended to multivariate mathe-
matical morphology [10].
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