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ABSTRACT 
 

The instantaneous frequency law is an important tool for 
the analysis of time-frequency content of a signal. Generally, 
the analyzed signals are composed of several time-frequency 
components characterized by various non-linear contents. To 
deal with the nonlinearity of time-frequency content, several 
time-frequency distributions have been proposed, mainly 
based on warping techniques. Recently, we introduced the 
time-frequency distributions based on complex-lag argu-
ments. Its property to strongly reduce, in the case of a single 
component, the inner interferences due to the time-frequency 
non-linearity has been shown. In this paper we prove its ca-
pabilities to deal with multi-component signals. This property 
is achieved by an appropriate combination of complex-lag 
moments computed for different complex lags sets. Numerical 
examples prove the benefits of the concept defined in this 
paper. 

Index Terms— Time-frequency analysis, Signal Repre-
sentations 
 

1. INTRODUCTION 
 

The analysis of signals characterized by complex time-
frequency behaviour is a very challenging topic, due to the 
richness of the information describing the analyzed phenom-
ena. In a large number of applications the analysis of the 
time-frequency (T-F) content provides an efficient solution 
for the characterization of diverse physical phenomena. Wave 
propagation trough time-varying dispersive channels, micro-
Doppler effects or mechanical signals are just three examples 
requiring an efficient time-frequency analysis of signals aris-
ing from these applications [1]. The signals associated to 
these applications are generally characterized by many non-
linear time-frequency structures. An efficient analysis of such 
signal should highlight the time-frequency energy of signal 
structures despite of artefacts that inherently appear when 
using time-frequency representations (TFR). Hence, in the 
case of linear TFRs, the well-known trade-off between time 
and frequency resolutions has to be considered. This topic 
has been subject to a large number of works. An alternative 
to linear TFR is the concept of bilinear TFRs [2]. One of the 
major research directions concerns the interference (gener-

ated by the bi-linearity) control in order to focus on time-
frequency components of the signals. There are two types of 
interferences: inner interferences, generated in the case of 
non-linear time-frequency components and cross-terms, gen-
erated by the multi-component structures. The first interfer-
ences type is usually addressed by non-linear TFR designed 
with help of time or frequency warping concept [1], [3]. Re-
cently, complex time distribution concept has been intro-
duced in [4] as an efficient way to produce almost com-
pletely concentrated representations along the polynomial 
instantaneous frequency laws (IFL) of order 4 or less. In [5] 
we propose the generalization of the complex time distribu-
tion producing, in the mono component case, highly concen-
trated distributions around arbitrary polynomial IFLs.  

In this paper we will show that the complex time distribu-
tion concept is able to deal with multi-component signals. 
This property is achieved by an appropriate choice of sets of 
complex lags. Combining the complex-lag moments com-
puted for these sets produces a significant attenuation of 
cross terms with respect of auto-terms.  

The paper is organized as follows. In Section 2 a brief 
presentation of the complex time distribution concept is 
done. The modified version of this concept having multi-
component capabilities is presented in Section 3. The theo-
retical benefits of the new concept are analyzed via numeri-
cal examples in Section 4. We conclude in Section 5.  

 
2. TIME-FREQUENCY DISTRIBUTION BASED ON 

COMPLEX LAGS ARGUMENTS 
 
 The concept of complex lag distributions has been intro-
duced in [4] as a way for inner interferences reduction with 
respect of Wigner distribution. Recently, this concept has 
been generalized in order to focus on arbitrary instantaneous 
phase derivate of a signal [5]. Let consider the signal defined 

as ( ) ( )j ts t Ae φ= .  The case of A depending of t can also be 
addressed since the effect of slowly varying amplitude is 
“visible” on the instantaneous phase.   
 By using the Cauchy’s integral formula [6] it is possible 
to compute the Kth order derivative of the instantaneous 
phase as  
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 This relation shows the interest of the complex time con-
cept: the Kth order derivate of function φ  at instant t can be 
computed as the complex integral over the integration path γ 
defined around this point. Applying the theory of Cauchy’s 
integral theorem [6] and after few computations the expres-
sion (1) becomes [5]:  
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 The discrete version of (2) is defined for 
2 / ; 0,.., 1p N p Nθ π= = −  (see the figure 1) where N is the 

number of discrete values of the angle θ.  
 

( ) ( )
2 21

0

! p pKN j jK N N
K

p

Kt t e e
N

π π

φ φ τ ε
τ

− −

=

 
= + + 

 
∑       (3) 

 

where ε is the discretization error term.  

 
Figure 1 - Definition of complex lag coordinates 

 

 Using the properties of the roots of unity, 
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expression (3) becomes:   
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where Q is the spread function defined as [6] : 
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As indicated by (4) and (5), the sum of the phase samples 
defined in the complex coordinates (left side of 4) is linear 
depending on τ  if the φ’s derivates of orders greater than 
N+K are 0. In order to exploit this property we define the 
generalized complex-lag moment (GCM) of s as the opera-
tion leading to (4): 
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The computation of GCMs implies the evaluation of sig-
nal samples at complex coordinates. This abstract notion is 
defined with help of analytical continuation of a signal de-
fined as [6]: 
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where S(f) is the Fourier transform of signal s.  
Taking the Fourier transform of GCM with respect of τ  

we define the generalized complex-lag distribution (GCD): 
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As stated by this definition, the Kth order distribution of 
the signal, obtained for N complex-lags, highly concentrates 
the energy around the Kth-order derivate of the phase law. 
This concentration is optimal if the φ’s derivates of orders 
greater than N+K are 0, exactly like in the case of chirps rep-
resented by Wigner distribution.   

The general definition (8) leads to a large number of 
TFRs, part of them well known in literature. For example, for 
K=1; N=2 the WVD is obtained whereas the case K=1; N=4 
corresponds to the complex-time distribution (CTD) [4]. In 
[5] we have shown that increasing the number of complex 
lags leads to an attenuation of inner interference due to the 
time-frequency non-linearity. This is illustrated by the next 
example for a test signal 

 

( ) ( )( )( )1 exp 2 0.1 4cos 0.025 ; 0,...,511s t j t t tπ= + = . 
 

 
Figure 2 - Inner interference for WVD, CTD and 

1
6GCD  

 
 We remark the better concentration of time-frequency 
energy in the case of GCD1

6 than in the case of the other 
TFRs. This is analytically proved by the spread function ex-
pression (5) and illustrated by this example.  
 The next example points out on the derivability property 
of GCD. We consider a 4th order polynomial phase signal 
defined by 
 

( ) ( )( )5 2 5 3 10 4
2 exp 2 0.32 10 4.8 10 8.6 10 ; 0,...,511s t j t t t t tπ − − −= + − ⋅ + ⋅ = . 

 

 The figure 3 plots in the top the analytic derivatives of 
first, second and third orders of the IPL of this signal. We 
plot, in the bottom of the figure 3, the GCDs of the same 
orders.  
 We remark that the theoretical derivatives are correctly 
represented by the GCDs of corresponding order, justifying 
the derivation property of the complex-lag distribution. By 
derivation property it is possible to reduce a high order poly-
nomial phase signal to a simpler one. That is, in the case of 
signal s2, the estimation of 4th order polynomial coefficient 
could be done by computing the Fourier transform of GCM 
of order 4.     
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Figure 3 - Derivation of instantaneous phase by GCDs 

  
 This property, detailed in [5], has been studied so far only 
in the case of a single component. The next section contains 
an extension of GCD to multi-component signals.  
 

3. COMPLEX LAGS MOMENT FOR MULTI-
COMPONENTS SIGNALS  

 
 As proved in [5] and illustrated in the previous section, 
the GCD is an interesting tool for analysis of arbitrary deri-
vates of instantaneous phase of a signal. So far, only mono-
component signals have been considered. In the case of 
multi-component signals cross-terms will appear due to the 
non-linear form of the GCMs (6). That is, considering a sig-
nal composed by two components, 
( ) ( ) ( ) ( ) ( )1 2

1 2
j t j ts t s t s t e eφ φ= + = + , by analogy with the CTD 

case [4], the GCM can be expressed as : 
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where CT is the terms indicating the cross terms. Because of 
the complicate GCM’s definition, an analytical calculation of 
cross terms is a very difficult task. From (9) we remark that 
the auto-terms are sinusoids in τ  with frequencies given by 
the Kth order derivative of instantaneous phase laws φ1 et φ2. 
The spread functions, Q1 and Q2, can be neglected if φ’s deri-
vates of orders greater than N+K are 0. Obviously, the cross 
terms generated by combination of signal’s components ac-
cording to the GCM definition affect the visibility of auto-
terms. This is illustrated, via the next example, in the case of 
a two-component signal defined as:  
 

( ) ( )( ) ( )( )5 2 5 3 10 4 3 2
3 exp 2 0.32 10 4.8 10 8.6 10 exp 2 0.12 3 10s t j t t t t j t tπ π− − − −= + − ⋅ + ⋅ + + ⋅ . 

 We remark that the 
2
4GCD  of the two-component signal 

contains the structures corresponding to the second order 
derivative and having a correct shape with respect of theo-
retical derivation (top side of figure 4). 

 
Figure 4 - Derivation IPLs for a two-component signal 

  
 Nevertheless, the cross terms have the same energetic 
level and they have a more complicate shape than in the case 
of  WVD. In order to reduce the level of cross terms the start-
ing point is the remark that the auto-terms of (9), excepting Q 
function and lag set !/K K Nτ τ→  (however, this depend-
ence can be avoided by a simple warping procedure as we 
will see further), don’t depend of number of lags and of their 
structure. It means that, computing GCMs for several lag 
sets, the auto-terms will have the same structure whereas the 
cross-terms will be differently located because of their de-
pendence of N. Furthermore, the summation of these several 
GCMs will highlight the auto-terms decreasing in the same 
time the level of cross terms. Considering the sets of GCMs 
computed for several lags sets,  
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the multi-lags sets GCM (mlsGCM) is defined as  
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 Practically, the first step is the computation of GCMs 
(10). The second step is the warping of lag sets of each GCM 

according to 
( ){ } !

Ki iN
K

τ τ→ . This step is very important in 
order to ensure that all GCMs (10) are expressed in the same 
lag axis. Finally, the summation (11) is computed. For the 
two-component signal used in (9) the mls-GCM shows ana-
lytically how the auto-terms are amplified: 
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 The Fourier transform of mlsGCM, called mlsGCD, 
 

 { } [ ]( ) { } [ ]( ), ,
i i

K K
N NmlsGCD s t mlsGCM s tτω τ = ℑ   (13) 

 

produces a cross-terms reduced distribution. As an illustra-
tive example, for the signal used in figure 4, the results ob-
tained by mlsGCD are illustrated in figure 5. As this figure 
shows, using many lag sets leads to a cross-terms level re-
duction. The attenuation of the cross-terms is more signifi-
cant as the number of lag sets increases. For this example, 
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eight set of lags is appropriate for an accurate representation 
of auto-terms.  

 
Figure 5 - Cross-terms reduction using mlsGCM 

   
4. RESULTS 

 
 The capability of mlsGCD, defined in the previous sec-
tion, to perform in a multi-component case can be success-
fully exploited in a large number of applications dealing with 
complex time-frequency modulations. The first example is 
the estimation of a harmonically frequency modulation 
mixed with coherent signals. This could be the case of audio 
signals or micro-Doppler radar signals (corresponding to 
radar signal returned by helicopter blades) corrupted by co-
herent attacks as tones or chirps. To illustrate such applica-
tion let consider a sinusoidal frequency modulation corrupted 
by a chirp and sinusoid (theoretical IFLs plotted in the figure 
6.a).  

 
Figure 6 - Separation of a sinusoidal frequency modulation (SFM) 

 
 Clearly, in the spectrogram domain (figure 6.b), the SFM 
is masked by the chirp and the tone as well as the noise 
(SNR=10 dB). The mlsGCD2 (computed for 9 lag sets, figure 
6.c) removes the effect of tone and stationaries the chirp ef-
fect. Finally, only the SFM is “visible” (figure 6.d) if the 
third order derivate is done via mlsGCD3. In this domain, the 
filtering or parameter estimation of SFM can be easily done. 
 Another application of the concept of mlsGCD is the 
extraction of transient impulses corrupted by some coherent 
signals. Hence, using the mlsGCD concept, we take advan-
tage on the infinite derivability of the transient signals.  
 Transient signals can be globally defined as impulsive or 
very short duration signals often with oscillations. These 
signals exist in many different applications and systems from 

underwater acoustic to audio signals with sound attacks or 
electrical systems with partial discharges and commutation 
switches, for example. The main processing done on this type 
of signal aims to detect them, characterize them and localize 
their source. Several signal processing tools such as higher-
order statistics and wavelets coefficients have been already 
used and upgraded to perform the goals of detection and lo-
calization but they do not lead to real characterization of the 
transient signals. The concept of GCD and mlsGCD shows 
its convenience to perform on transient signals in so far as, 
for an impulse, the successive order derivates of the phase 
law remain impulsive in a certain way and with no end. 
Therefore, the distinction of the transient is marked in the 
instantaneous law whatever the derivative order is.  
 The capability of GCD and mlsGCD to perform with 
transient signals can be exploited in several applications. Let 
us consider a multi-component signal composed by a chirp 
and a BPSK (Binary Phase-Shift Keying) modulation.    

 
Figure 7 – GCD Performance to detect transient information 

 
 As shown in the figure 7, the chirp crossing the BPSK 
hides, in the case of spectrogram and the WVD, the phase 
transitions corresponding to the BPSK. Using the IPL’s deri-
vation provided by GCD (figure 7.b) we can remove the 
chirp effect highlighting also the transitions. We can remark 
that the transitions detected in GCD domain are coherent 
with the theoretical ones illustrated in figure 7.d.      
  Another application is illustrated in figure 9 where a 
simulated train of impulses (plotted in figure 8) is corrupted 
by a chirp (spectrogram plotted in figure 9.a). The GCD3 
theoretically removes the chirp effect and keeps the mark of 
the impulses in so far as the successive phase derivatives of a 
transient remain impulsive. The result of the GCD3 plotted in 
figure 9.b consequently shows the successful separation of 
the four transients present in the signal. 
 

 
Figure 8 - Train of impulses 
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Figure 9 - Separation of the transient signals in a chirp 
    

The previous example illustrates also the mlsGCD per-
forming in the case of variable amplitudes signals. Even if 
the pulses have different amplitude their representation in the 
GCD3 domain is correctly done.  

As well as GCD, the mlsGCD concept shows its utility 
for transient signals analysis, especially in the case of a sig-
nal corrupted by noise. As explained in section 3, the 
mlsGCD for multi-components signals leads to amplify the 
auto-terms and reduce the level of cross terms. In the case of 
transients embedded in noise, the idea is the same. A high 
order GCD of such a signal gives a high value signature of 
each transient but the phase derivative of the noise strongly 
corrupts the distribution. By using mlsGCD, the high value 
signature of the transients is amplified whereas the noise 
effect is reduced. Figure 10 illustrates this property of 
mlsGCD; the same train of impulses (defined in the figure 8) 
is used and complex white gaussian noise is added (SNR=12 
dB). On the third order GCD, the transient signatures are 
clearly masked by the noise phase derivative, even after 
thresholding to keep the highest amplitude values. The distri-
bution resulted from the third order mlsGCD (computed for 8 
lag sets) makes the transient signatures more visible. 
 

 
 

Figure 10 - Noise effect reduction using mlsGCD 
 

 This example shows the capability of the mlsGCD to 
extract, via derivability property, the transient signals cor-
rupted by both noise and coherent perturbations. It performs 
also in the case of pulses having different amplitudes.   
 As shown in figure 10.b, the detection of transient signal 
can be accurately done in the mlsGCD domain.  
 

5. CONCLUSION 
 
 In this paper we address the problem of complex-lag rep-
resentation of multi-component signals. The derivation prop-
erty of the phase of a signal has been extended to multi-
component signals. This extension is based on the property 
of the auto-terms of the GCM which don’t depend to the 
complex lag sets. Thus, the summation of GCMs evaluated 
for several lag sets, can produce the amplification of auto-
terms. The new defined distribution allows focusing on arbi-
trary derivate of phase in a multi-component context. This 
property can be of great helpful to separate signals with infi-
nitely derivate phase laws from embedded observation.  
 Otherwise, mlsGCD can be seen as a new methodology 
for polynomial phase modelling. These applications as well 
as theoretical subjects, related to signal-dependent choice of 
lag sets and 2D extension of complex lag concept, will be 
address in our future works.   
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