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ABSTRACT 
In this paper we address the problem of separating the 
sound sources composing complex sound mixtures using a 
single microphone. The a-priori information of static and 
delta power of each source is represented by Gaussian mix-
ture models (GMMs) and incorporated into a full posterior 
probability density function. We present a unified probabilis-
tic framework that integrates the a-priori information of the 
power and the delta power of the sources and we derive a 
closed-form approximate minimum mean square error 
(MMSE) estimator of the audio sources. The experimental 
part evaluates our approach on mixtures of real environ-
mental sounds in scenarios that involve speakers talking in a 
music background. Comprehensive experiments clarify the 
importance of incorporating delta in the separation process 
by presenting separation results using the static only and the 
joint static and delta a-priori models. 

1. INTRODUCTION 

Sound events, more often than not, do not appear in iso-
lation but are a part of an audio mixture. Typical real life 
examples of sums of audio sources are the combination of 
vocals and instruments in a song, speech in the presence of 
a noisy background, and overlapping speech in a conversa-
tion. The estimation of the contribution of each source to 
the audio mixture is not a trivial task and it is even harder in 
the case where only one recording channel of the mixture is 
available. Most of the state-of-the-art, model-based ap-
proaches use the Gaussian mixture models (GMM) or their 
natural extensions the hidden Markov models (HMM) [1-6] 
to model probability densities representing the sources. 
GMM-based approaches allow source separation due to the 
diversity of source spectral shapes they can represent in 
their mixtures. In other words, they exploit the fact that the 
spectra of different sources correspond to the different 
characteristic spectral patterns of the various combinations 
that can be observed in the source realizations. The sets of 
such characteristic spectral patterns constitute essentially 
the GMM source models.  

This work deals with the problem of separating two 
sources composing audio mixture out of a single recording. 
The generalization for any number of sources is straight-

forward. Our approach belongs to the model-based category 
of single-channel source separation algorithms that model 
a-priori information about the power and the delta power of 
the sources with GMMs, while the estimation of the inde-
pendent sources forming the mixture is derived by minimiz-
ing an objective function under the Bayesian probabilistic 
framework. Our formulation follows the line of thought of 
[3,5,6]. However, there are subtle differences that eventu-
ally lead to two novel gain functions. The main differences 
are:  
• First it deduces novel gain functions for the separation of 

two simultaneous sound sources out of a recording of a 
single microphone. In this work the mathematical formu-
lation takes place on the power of short-time Fourier 
transform (STFT) whereas in [3,5,6] the statistical model-
ling is applied to the complex STFT domain using the 
concept of complex-valued random vectors.  

• In order to deduce an estimation of the sources compos-
ing the sound mixture we are using the minimum mean 
square error (MMSE) of the power spectrum which is 
closer in spirit to speech/speaker recognition, while in 
[3,5,6] the MMSE of spectrum is employed.  

The dynamic features (deltas and double deltas) have 
proven themselves as complementary cues of information as 
they are able to express time correlations between signal 
frames and are widely used in the automatic speech/speaker 
recognition (ASR) in addition to the static features enhancing 
the discriminative power of the recognition process. 

This work presents an extension to the problem of single 
channel source separation by introducing probabilistic 
models of the time-differences of the power spectrum in the 
separation thus exploiting the time-dependencies of the 
signals in the estimation process. By using the dynamic 
features (in addition to static ones) we demonstrate that the 
separation performance is improved, as compared to the 
GMM-based approach applied to the power domain, due to: 

• improved discriminative power facilitating correct identi-
fication of the characteristic spectral patterns, 

• exploiting of time dependencies at the signal level, allow-
ing a better estimation of the spectra of the sources by 
predicting some parts of them from the previously esti-
mated spectra. 
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2. PROBABILISTIC SINGLE-CHANNEL 
SOURCE SEPARATION 

2.1 One channel separation in the power domain using 
static priors only 

 
We present a mathematical formulation for two sources, as-
suming that a generalization for any number of sources is 
straightforward. Let ,k tX denote a complex domain STFT of 
the mixture with k=1,..,K being the frequency-bin index for a 
fixed-length time window (K is the length of the discrete 
Fourier transform), and t=1,..,T being the frame index. 
Let  be the corresponding STFTs of two signal 
sources. Then 

1
, ,  k t k tS S 2

,
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Assuming that the sources are independent, the power spec-
trum of the mixture can be obtained from (1) by ignoring the 
error in phase:  
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then (2) becomes 

1, 2,t t= +x s s                            (3) 
In this work we use the Bayesian statistical framework and 
we incorporate the a-priori information we have for the 
sources in probability density functions  
represented by Gaussian mixture models (GMM). In other 
words, we assume that: 
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where 1, 2,,iµ µ  are the mean vectors,  are the co-

variance matrices,  are the weights (satis-

fying  and 

1, 2,,iΣ Σ j

≥1, 2,0, 0i jw w≥

1, 1i
i

w =∑ 2, 1j
j

w =∑ ), and the subscripts i, j 

are indices running over the mixtures of each source.  
A power vector of the mixture is thought to be created by 
first selecting a mixture number i with probability and 
then producing an observation following the normal distribu-
tion . The same procedure is followed for 

 and the results are combined according to (3).  

1,iw

( 1, 1, 1,; ,t i iN µ Σs )
2,ts

Let ( ),i j tγ x denote how probable is that the combination i, j 
of states has produced the power of the currently processed 
mixture frame, i.e.: 

( ) ( ) ( ) ( ) ( ), , ,i j t t tp i j p i j p i p jγ = ∝x x x        (5) 

If i, j are given then from (3) we deduce 

( ) ( )1, 2, 1, 2,, ; ,t t i j ip i j N µ µ= + Σ +x x jΣ , and there-

fore ( ) ( ), 1, 2, 1, 2, 1, 2,; ,i j t i j t i j i jw w Nγ µ µ∝ + Σx x + Σ . 

The optimization criterion for estimating  is MMSE, i.e., 1s

( )2
ˆˆE − ⎯⎯→
11 1 ss s x min , which is equivalent to take the 

expectation of power spectrum, thus we estimate the source 
power spectrum  (and similarly ) as:  1,ts 2,ts

( ) ( )1, 1, 1, 1,E t t t t t tp d= ∫s x s s x s                       (6) 

( )1,E t ts x  can be seen as the result of integrating out of 

( )1,tE , ,t i js x the hidden states i, j and (6) becomes: 
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which can also be expressed as: 
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By direct application of the Bayes law we have:  
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By applying lemma 1 from the appendix we conclude that 

( )1, , ,t tp i js x  is a Gaussian pdf, i.e., 

( ) , ,
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 (see also [7-8] for a situation in robust speech recognition 
that bears resemblance to the above derivation).  
Therefore, we derive a local MMSE estimator  and the 

covariance 

,
1,ˆi j

ts
,

1,
ˆ i j

tΣ  of the estimator as well. The estimator’s 
covariance is useful for estimator’s error analysis (see section 
3). Finally, from (8) one can directly get the estimator as: 
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2.2 One channel separation in the power domain using 
static and dynamic priors 

 

1, 1ˆ t−s

We proceed in incorporating the a-priori information of dy-
namic power spectrum in probability density functions for 

. The deltas of sources  are defined as: 1,  s s2

1

1 2,  s s
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where 1, 2,,i jµ µ∆ ∆  and  are the mean vectors and 
covariance matrices of deltas.  
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By using again lemma 1 we conclude that 
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Thus, we show that conditionally on the previously estimated 
power spectra the distributions of and  are GMMs 

with parameters and 
1,ts 2,ts

1, 1,{ , }i iµ Σ 2, 2,{ , }j j jµ Σ  depending on 

and 2, 1ˆ t−s . Equation (11) is identical to (4) if one re-

places 1,iµ , 2, jµ , 1,iΣ , 2, jΣ  with 1,iµ , 2, jµ , ,1,iΣ 2, jΣ . There-
fore, we can follow directly the inference procedure of sec-
tion 2.1 and then conclude that the final estimator is: 
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where 1,iµ , 1,iΣ  (and similarly for 2, jµ , 2, jΣ ) are given by 
(10). 
In order to decrease the influence of assuming perfect estima-
tors of 1, 1 2, 1,  t t− −s s we have applied a penalization factor 

 of the delta features covariance matrices (see also [7-
8] for a similar case). Therefore, (10) becomes: 

1r >
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The experiments presented in Section 4 are for r=7, that was 
found experimentally to give the best results. 

3. SINGLE STATE ERROR ANALYSIS 

We analyze the separation error in the single state (i, j) with-
out considering the influence of the state selection process. 
Using the expressions for 1,iµ  and  in (10) we can re-

write the expressions for 

1,iΣ
,

1, 1ˆi j
t t−s  and ji

tt
,

1,1
ˆ

−Σ  (similar to those 

for  and ,
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ts ,
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tΣ  from section 2.1) in the following forms: 
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These expressions have a quite convenient form to analyze 
the estimator and the covariance of the estimation error. 
From the expression for ji

tt
,

1,1
ˆ

−Σ  we see that in the limit case 

the smallest covariance dominates in this expression. For 
example if ( )1, 1, 2, 2,min , ,i i j∆ ∆Σ << Σ Σ Σ j , then 

,
1,1, 1

ˆ i j
it t ∆−Σ ≈ Σ .  

Therefore, if we include the dynamic covariances 1,i∆Σ  and 

 which are smaller than static covariances 2, j∆Σ 1,iΣ  and 

2, jΣ , then ji
tt

,
1,1

ˆ
−Σ  will be smaller (compared to ji

tt
,

1,1
ˆ

−Σ  

without the dynamic features). This is a case in practice (i.e. 

1,i∆Σ is usually smaller than ), since we expect to ob-

serve less variation in 
1,iΣ

1, 1, 1, 1t t t−∆ = −s s s compared to . 

Even if 

1,ts

1,i∆Σ  and  are of the same order as 2, j∆Σ 1,iΣ  and 
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2, jΣ , we should still gain by using dynamic features. In-

deed, let’s assume for example that  and 

, then we have: 

1, 1,i∆Σ ≈ Σ i

j2, 2,j∆Σ ≈ Σ

( ) 11,
1, 2,1, 1

1ˆ
2

i j
i jt t

1 −− −

− ⎡ ⎤ ⎡ ⎤Σ ≈ Σ + Σ⎣ ⎦ ⎣ ⎦ , which is two times less 

than the case of static features only (i.e., 

( ) 11,
1, 2,1, 1

ˆ i j
i jt t

−− −

− ⎡ ⎤ ⎡ ⎤Σ ≈ Σ + Σ⎣ ⎦ ⎣ ⎦
1

). The expression for esti-

mate ,
1, 1ˆi j

t t−s  is also very easily tractable: 

• if 1,iΣ  is small compared to other covariances, then 
,

1,1, 1ˆi j
it t µ− ≈s , i.e., we replace  by its expected value 

given by the static model, 
1,ts

• if 2, jΣ  is small compared to other covariances, 

then ,
2,1, 1ˆi j

tt t jµ− ≈ −s x , i.e., we estimate  as a dif-

ference between the observed mixture and the expected 
value of  given by the static model, 

1,ts

2,ts

• if 1,i∆Σ  is small compared to other covariances, then 
,

1, 1 1,1, 1ˆ ˆi j
tt t iµ− ∆− ≈ +s s , i.e., we replace  by its ex-

pected value given by the dynamic model (partially 
predicted using the previous estimate ), 

1,ts

1, 1ˆ t−s

• if 2, j∆Σ  is small compared to other covariances, then 
,

2, 1 2,1, 1ˆ ˆi j
t tt t µ− ∆− ≈ − −s x s j . 

Therefore we conclude that the joint employment of static 
and dynamic components should perform better than using 
static a-priori information only. With GMM-based approach 
we always estimate our sources based on some selected 
codeword (characteristic spectral shape) of a fixed codebook 
(GMM). With the incorporation of GMM that model the del-
tas we alternate between prediction from the selected code-
word and prediction from the previously estimated spectrum. 
The choice between these two options is done so that the 
estimation variance is minimized. Thus, with the use of delta 
spectrum we have a smaller covariance of the estimation 
error, as compared to the GMM-based approach; therefore, 
we expect achieving a better separation performance. 

4. SEPARATION EXPERIMENTS 

The experimental setup is focused on separating speech from 
background music. The music dataset consists of 10 pieces of 
instrumental music (each piece is about 2 min long). The 
speech dataset consists of two sets of recordings: 100 speech 
sentences from TIMIT database (10 distinct male speakers) 
and 100 sentences of female speakers, so that we have 10 
sentences per speaker. 
We trained a male and a female speech model. The 100 files 
of each set are partitioned in 4 subsets of 25 files each form-

ing a validation set. The training set corresponding to each 
validation subset is composed of the recordings of the rest of 
the subsets (4 subsets of 75 recordings). For music model 
training we use the 60 last seconds of the corresponding mu-
sic piece. Each speech recording of the evaluation database is 
mixed with each file of the 10 music recordings, therefore the 
evaluation datatabase is made by a total of 4*25*10=1000 
mixture recordings of male speech and music and 1000 mix-
tures of female speech and music. 
Each recording is downsampled to 11025 Hz. The STFT is 
computed using half-overlapped 512 samples (46 ms) length 
Hann windows, and the inverse STFT is computed using 
rectangular windows. For the power domain separation 
methods (where only the magnitudes of source spectra are 
estimated) the phases of the mixture are used for re-synthesis 
of estimated sources in time domain [3,5,6]. Each GMM 
model is composed of 16 states with diagonal covariance 
matrices. The models are initialized using 5 iterations of the 
K-means algorithm and trained using a standard version of 
the expectation-maximization algorithm [9] (see e.g. [5] for 
more details). The measures that are used to assess the pro-
posed static and static+dynamic versions are two commonly 
used for source separation [10]: 
1. Signal to distortion ratio (SDR) defined as: 

2

10 2 2

ˆ ,
10 log

ˆ ˆ ,
m m

m m m m

s s
2s s s s−

 

where, is the true reference source signal and is 
the estimated one and m=1,2. 

ms ˆms

2. Segmental SDR (SegSDR): we compute SDR for short 
segments of 512 samples overlapping by 50%, convert 
them in dB and average it over the total sequence. 
SegSDR is sensitive to local separation errors, thus allow-
ing discovering them.  

The experimental part aims to explore the benefit of incorpo-
rating the dynamic features into the separation process. The 
proposed versions of static and static+dynamic power fea-
tures are also compared against a state-of-the-art algorithm 
[3,5] achieving at least comparable separation results. How-
ever, the method from [3,5] slightly outperforms the pro-
posed methods. We think that this is due to the fact that the 
spectral MMSE [3,5] is more consistent with separation per-
formance measures employed (SDR and SegSDR) than the 
proposed power spectrum MMSE [6]. The incorporation of 
the dynamic features results into a small but consistent gain 
in the separation performance outperforming the static-only 
case as predicted by the theoretical analysis and as demon-
strated by the objective measures depicted in Tables 1a-1b. 
The results are the mean scores over 1000 mixture recordings 
for the male case and 1000 files for the female case. How-
ever we are currently looking into different versions of dy-
namic features in order to enhance this gain. Three separation 
techniques are compared: the static power case (stat), the 
static and dynamic features (stat+dynam), and a state of the 
art one-channel separation method (spectral [3,5]). In bold 
letters are the best results of all three methods compared. In 
italics, are the best results of the comparison of the power 
static and static+dynamic cases. 
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 Male speech  Female speech 
 SDR SegSDR SDR SegSDR 

Spectral 9,25 2,83 8,89 2,74 
Stat 9,12 2,31 9,06 2,31 
Stat+Dynam 9,34 2,53 9,38 2,58 

Table 1a) Mean separation results for speech+music 
mixtures. The evaluation set of male and female speech sig-
nals as extracted from the mixture is compared to the corre-
sponding original recordings used to make the mixture.  

 Music male mix  Music female mix 
 SDR SegSDR SDR SegSDR 

Spectral 6,16 7,55 5,64 7,48 
Stat 5,33 7,06 4,76 6,89 
Stat+Dynam 5,61 7,44 5,18 7,18 

Table 1b) Mean separation results for speech+music 
mixtures. The evaluation set of the music part as extracted 
from the mixture is compared to the corresponding original 
music recordings. 

5. CONCLUSIONS 

The aim of this work is to introduce a unifying probabil-
istic framework for one-channel separation using static only 
and joint static and dynamic power information. We have 
derived two novel closed-form estimators of signal separa-
tion in the power domain. The use of deltas as in the case of 
automatic speech/speaker recognition has proven to supply 
complementary information to the static features as regards 
the separation task. The algorithms can, in principle, separate 
an arbitrary number of audio sources out of a single mixture 
provided that there are available probabilistic descriptions of 
each source in the form of GMMs.  

Online separation samples of the spectral, static and 
static plus dynamic techniques are provided for subjective 
evaluation by the readers at:  
http://perso.telecom-paristech.fr/~ozerov/demos.html 
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APPENDIX 

Lemma 1 If the density of a random vector  is propor-
tional to the product of two Gaussian densities, i.e.,  

s

1 1 2 2( ) ( ; , ) ( ; , )p c N Nµ µ= ⋅ Σ Σs s s  
(  is a normalization constant), then s  is a Gaussian ran-
dom vector as well (i.e., 
c

ˆˆ( ) ( ; , )p N µ= Σs s )  with mean 

vector µ̂  and covariance matrix Σ̂  defined as : 

( ) ( )1 1

1 2 1 2 1 2 2ˆ 1µ µ µ
− −

= Σ +Σ Σ + Σ +Σ Σ

( ) 1

1 2 1 2
ˆ −
Σ = Σ +Σ Σ Σ . 

Proof If one completes the squares of the Gaussians and re-
arranges the terms of ( )p s  one can see that 

ˆˆ( ) ( ; , )p N µ= Σs s . In order to find µ̂  and , we subse-
quently introduce the following auxiliary function: 

Σ̂

1 1 2 2

ˆˆ( ) log ( ; , )
log ( ; , ) log ( ; , ) log

N
N N

µ

µ µ

Φ = Σ =

Σ + Σ +

s s
s s c

 

From the definition of Gaussian distribution one can easily 

figure out that µ̂  is the solution of ( ) 0∂ Φ =∂ ss  and that  
12

ˆ ( )
−

⎡ ⎤∂
Σ = − Φ⎢ ⎥∂ ∂⎣ ⎦

s
s s

. By computing the first and the sec-

ond derivatives of ( )Φ s  we obtain the above-mentioned 

expressions for µ̂  and Σ̂ . 
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