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ABSTRACT
We address the problem of curve alignment with a semi-
parametric framework, that is without any knowledge of the
shape. This study stems from a biological issue, in which
we are interested in the estimation of the average heart cycle
signal, but wish to estimate it without any knowledge of the
pulse shape, which may differ from one patient to another.
We suggest in this paper an estimator based on a smoothed
functional of the periodogram. Results show better perfor-
mances than the standard method, as well as its robustness to
the noise level.

1. INTRODUCTION
The aim of this work is to address a specific curve alignment
problem. We pay attention to the issue of estimating either
a set of shift parameters {θ j, j = 1 . . .M}, or its distribution,
when this sample is not observed directly but through its im-
age by an unknown operator s. More precisely we observe a
collection of curves

yk,l = s(tk−θl)+σnk,l ,k = 0 . . .m−1, l = 0 . . .M , (1)

where the nk,l are independent standard normal random vari-
ables, independent of θ , {tk, k = 0 . . .m− 1} being equally
spaced observation times and M denotes the total number of
curves. Such problems appear commonly in practice, for in-
stance in functional data analysis (FDA). In this framework,
a common problem is to align curves obtained in a series of
experiments before extracting their common features; we re-
fer to [1] for an in-depth discussion on the problem of curve
alignment in functional data analysis applications.

In this contribution we focus on the analysis of ECG sig-
nals. In recordings of the heart electrical activity, at each
cycle of contraction and release of the heart muscle, we get
a characteristic P-wave, which depicts the depolarization of
the atria, followed by a QRS-complex stemming from the de-
polarization of the ventricles and a T-wave corresponding to
the repolarization of the heart muscle. We refer to [2, Chapter
12] for an in-depth description of the heart cycle. A typical
ECG signal is shown in Figure 1. Different positions of the
electrodes, as well as some malfunctions of the heart, can al-
ter the shape of the signal. We aim at situations where the
heart electrical activity is cyclic enough, so that after prior
segmentation of our recording, the above model still holds.
This preliminary segmentation can be done, for example, by
taking segments around the easily identified maxima of the
QRS-complex, as it can be found in in [3].

It is therefore of interest to estimate the θ j in (1). These
estimates can be used afterwards for a more accurate estima-
tion of the heart rate distribution. In regular cases, such es-
timation can be done accurately by using the common FDA
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Figure 1: ECG signal from an healthy subject (arbitrary
units). This signal is recorded with additional measurement
noise, so that FDA alignment methods cannot give good re-
sults.

method (e.g. by using only the above prior segmentations).
However, when the activity of the heart is more irregular,
a more precise alignment can be helpful. This happens for
example in cases of cardiac arrythmias, whose identification
can be easier if the heart cycles are accurately aligned.

Another measurement often used by cardiologists is the
mean ECG signal. A problem encountered in that case is
that slightly improperly aligned signals can yield an average
on which the characteristics of the heart cycle are lost. The
proposed method leads to an estimation of the mean cycle by
averaging the segments after an alignment according to an es-
timated θ j. Additional benefits for a more proper alignment
can be found in many other measurements done by cardiolo-
gists.

The paper is organized as follows. Section 2 describes
the assumptions made and the method to derive the estimator
of the shifts, and proposes an estimate for their distribution.
Some theoretical results are presented about the settings re-
lated to this method. In Section 3, we present results on sim-
ulations and real datasets and compare them to the standard
method described in [1]. We also comment more precisely
the role of the parameters used in our estimator.
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2. SEMIPARAMETRIC ESTIMATION OF THE
SHIFT DISTRIBUTION

In this section, we present a method for the semiparametric
curve alignment. This method can be used as a first step for
a nonparametric estimation of the shift density, by following
the methodology described in [4]: first provide an estimate
for the shifts, and then plug the obtained values into a stan-
dard kernel estimate. We propose an M-estimator to retrieve
the shifts, in which the shape information is considered as
a nuisance parameter and the shifts are estimated jointly. A
similar approach appeared for example in [5] leading to an-
other estimator with good asymptotic properties.

2.1 Assumptions
We assume that we always observe the full noisy curve in
each sample, which can be formalized by the following as-
sumptions:
1. The distribution of θ and the shape s both have finite sup-

port, respectively [0,Tθ ] and [0,Ts].
2. Tθ +Ts < T .
3. s ∈ L2([0,Ts]).

Assumptions 1 and 2 imply that we observe a sequence of
similar shifted curves with additional noise (that is, that no
curve is truncated), so that the spectral information is the
same for all recordings. This makes sense for some neu-
roscience applications, e.g. when estimating the Inter-Spike
Interval distribution between neuronal pulses. For the case
of ECG data, those assumptions are less realistic, since the
QRS-complex of a heart cycle has indeed some observable
variability. However, it shall be noted that the low-frequency
information remains approximately invariant, thus Assump-
tions 1 and 2 hold in that sense. Assumption 3 is a standard
regularity assumption made on the studied signal. We also
denote by f the probability density function associated to the
random variable θ .

2.2 Description of the shift estimation procedure
We first estimate the sequence {θ j, j = 0 . . .M} using an M-
estimation procedure, that is by minimizing a cost criterion.
In order to define this criterion, we choose to split the set of
observed curves in N blocks of K + 1 curves as represented
in Figure 2, and to estimate jointly the sequence of vectors
{Θn, n = 1 . . .N}, where for all n

Θn
def= (θ(n−1)K+1, . . . ,θnK). (2)

One important difference, compared to the previously cited
works, is that we choose to estimate jointly blocks of param-
eters instead of one at a time. The estimation of {θn, n =
1 . . .N} is done by minimizing a cost function, which is now
described.

Let us denote by Sy the squared modulus of the Discrete
Fourier Transform of a given signal y. We define, for all
n = 1 . . .N, the mean of curves shifted by some correction
terms (α(n−1)K+1, . . . ,αnK):

ȳn(t;α(n−1)K+1, . . . ,αnK) def=

1
K +λ

(
λy0(t)+

nK

∑
l=(n−1)K+1

yl(t +αl)

)
, (3)
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Figure 2: Description of the dataset split into blocks of
curves

where λ is a tuning parameter in [0;K], and y0 is a reference
curve which is common to all blocks, and is introduced in
order to avoid problems of identifiability. We introduce the
following cost criterion to be minimized in order to align all
curves into the n-th block:

Cn(α(n−1)K+1, . . . ,αnK) def=
∥∥∥∥∥

1
M +1

M

∑
l=0

Syl −Sȳn(·;α(n−1)K+1,...,αnK)

∥∥∥∥∥

2

2

. (4)

Note that Cn attains its minimum if the curves in a block are
well aligned. The M-estimator of Θn is therefore given by

Θ̂n
def= Argmin

x j∈[0;T ]
Cn(x1, . . .xK) . (5)

When we are interested in the distribution of the shifts rather
than their values, the estimator of f , denoted by f̂ is naturally
computed by plugging the estimated values of the shifts in a
regular kernel density estimator, that is for all real x in [0;T ]:

f̂ (x) =
1

Mh

M

∑
l=1

Ψ

(
x− θ̂l

h

)
, (6)

where Ψ is a kernel function integrating to 1 and h the clas-
sical tuning parameter of the kernel.

2.3 Properties and settings of the shift estimator
2.3.1 Choice of the number of curves K

Since we observe noisy curves and did not assume any
knowledge on the spectral information in (4), it has to be
estimated first. A well known nonparametric estimator is the
periodogram, which has been extensively studied. However,
the periodogram of a single curve is too noisy, regardless
of the actual regularity of the true spectral information. A
good way to reduce the variance of this estimator is given
by the averaged periodogram, based on the mean of several
periodogram estimators, thus the necessity of splitting the
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Figure 3: Results for K=200 and σ2 = 0.1. (a) Two curves before alignment. (b) Comparison between estimated against
actual values (blue dots) of the shifts for λ = 50: good estimates must be close of the identity line (red curve). (c) Comparison
between estimated and actual values of the shifts for λ = 10. (d) Shift estimation using Least Square Estimate (see [1]) for
one block. (e) Probability density estimation for N = 20, K = 200 and σ2 = 0.1.

dataset. This allows to get a “smooth” function Cn whose op-
timization leads to an estimate close to the actual values of
the shifts. Thus, in the case of noisy curves, the parameter K
should be chosen big enough to make the noise term vanish.
It can be shown in [6] that the cost function of a given block
Cn can be decomposed in Cn = Dn +Rn, where

Dn(α(n−1)K+1, . . . ,αnK)

def=
m−1

∑
k=0

∣∣∣∣∣∣

∣∣∣∣∣
1

K +λ

(
λ +

K

∑
l=1

e
2ikπ(αl−θl )

T

)∣∣∣∣∣

2

−1

∣∣∣∣∣∣

2

(7)

is the deterministic part of Cn, whose minimum is attained if
and only if αl = θl for all l = (n−1)K +1 . . .nK. Moreover,
we get the following result on the random part of the cost
function:

Proposition 2.1 Denote by Rn the random part associated
to the cost function Cn.Thus, as K tends to infinity, we get for
all β ∈ (0,1) that

Rn =
2σ2

m
+OP(K−1+β ) .

Proposition 2.1 indicates that, provided K is large enough,
the cost function Cn is close to Dn + σ2/m, thus validating
the optimization procedure.

It can also be noticed that all blocks of K +1 curves have
one curve y0 in common. We chose to build the blocks of

curves as described in order to address the problem of iden-
tifiability. Without this precaution, replacing the solution
of (5) by θ̂ + c + 2kπ, k ∈ Z and s by s(·− c) would let the
cost criterion invariant. Adding curve y0 as a referential al-
lows to estimate θ−θ0, thus avoiding the unidentifiability of
the model.

2.3.2 Choice of the weight parameter λ
We now briefly discuss the choice of the tuning parameter λ .
In the estimator (5), λ is chosen to give more importance to
the curve y0, thus forcing the other curves to align accord-
ingly. Indeed, if we take λ = 1 (that is, all curves have the
same weights), the following proposition holds:

Proposition 2.2 Let {η(K), K ≥ 0} be a sequence such that
η(K)→ 0 as K →+∞. Assume that
∣∣∣∣∣

1
(K +1)

(
1+ ∑

1≤l≤K
exp

(
2iπk

T
(θl−αl)

))∣∣∣∣∣ > 1−η(K) ,

then there exists three constants c, γ and K0 such that, for
K ≥ K0, the number of curves whose alignment error is far
from c, denoted by #{k : |c−αk +θk| > η(K)α} is bounded
as follows:

#{k : |c−αk−θk| > η(K)α}≤ 1
γ

Kη(K)1−2α .
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K\σ2 10−6 10−2 10−1

2 4.4510−3 5.0010−3 5.1510−3

20 5.0310−3 4.9510−3 5.0910−3

50 4.9510−3 5.2410−3 4.9210−3

100 5.0110−3 4.9010−3 5.1510−3

200 4.8010−3 5.8510−3 5.6410−3

Table 1: Estimated MISE values for different block sizes K
and noise variances σ2.

Proofs of Propositions 2.1 and 2.2 can be found in [6]. Propo-
sition 2.2 illustrates that, as the number of curves increases
in each block, the curves all tend in practice to align around
the same value, c, which is not necessarily equal to 0. Thus,
giving more weight to the reference curve y0 allows to align
the curves accordingly to y0. Previous considerations implies
the existence of a trade-off for the tuning parameters K and
λ : indeed, Propositions 2.2 and 2.1 indicates that K should
be chosen big in order to well align the curves, but this goes
with larger computational time for the optimization proce-
dure. A practical method is therefore to choose λ from the
beginning, and make K increase until the average of K peri-
odograms does not vary much, that is

∥∥∥∥∥
1

K +1+λ

(
λ 2Sy0 + ∑

1≤k≤K+1
Syk

)

− 1
K +λ

(
λ 2Sy0 + ∑

1≤k≤K
Syk

)∥∥∥∥∥≤ ε , (8)

where ε is a threshold chosen by the user. Such a method
guarantees in practice that the cost function to optimize is
smooth enough for K being as small as possible.

3. APPLICATIONS
We present in this section results based on simulations and
on real ECG data. We compare our method to the one de-
scribed in [1] which is often used by practitioners, that is a
measure of fit based on the squared distance between the av-
erage pulse and the shifted pulses leading to a standard Least
Square Estimate of the shifts.

In the case of simulations, we study the influence of
the parameter K and λ empirically by providing the Mean
Squared Integrated Error (MISE) error for different values of
K, λ and σ2, with N = 20.

3.1 Results on simulations
3.1.1 Experimental protocol
Simulated data are created accordingly to the discrete
model 1, and we compute the estimators for different values
of the parameters K, λ and σ2. For each curve, we sam-
ple in order to get 512 points equally spaced on the inter-
val [0;2π]. We make the experiment with s simulated ac-
cording to the Hodgkin-Huxley model of a neural response.
The shifts are drawn accordingly to a uniform distribution
U (120π/256,325π/256), and θ0 = π .

3.1.2 Results
We present in Figure 3 results obtained in the alignment pro-
cedure, in the case of high noise level (σ2 = 0.1). We also

compare our estimations with those obtained with an existing
method, namely curve alignment according to the compari-
son between each curve to the mean curve [1]. Results for
landmark alignment are displayed in Figure 3(d). We ob-
serve that this shift estimation procedure is less efficient. An
example of density estimation is displayed in Figure 3(e),
using a uniform kernel. We retrieve the uniform distribution
of θ . Table 1 shows the estimated Mean Integrated Squared
Error (MISE), with different values of K and σ2 and λ = K.

3.1.3 Discussion

Figure 3(c) is a good illustration of Proposition 2.2. In this
graph, we observe that in each block the curves are well
aligned, since we get for each block that the estimated shifts
are distributed according to a line with slope 1, but that they
do not align with respect to the location of the reference
curve, due to a weighting parameter λ too small. Taking a
larger λ allows to address this problem, as it may be seen in
Figure 3(b). We thus observe that if K and λ are well chosen,
the shift estimation procedure performs well even if the noise
level is high. The method from [1] is less performant when
the noise level is too high. Indeed, since the average can be
very flat in the case of low SNR, this leads to estimation er-
rors possibly important. On the other hand, the averages of
periodograms remain relatively robust to the noise level in
all cases, since the noise variance introduces only a constant
term, which can be omitted in the optimization procedure.
We observe on Table 1 that the parameter K must be cho-
sen carefully: indeed, if K is large, the noise terms vanishes,
thus making the cost functions Cn regular enough, but make
the optimization problem more difficult to solve. These two
considerations induce to find a trade-off in practice.

From the theoretical point of view, the study of another
M-estimate proposed in [7] for curve alignment gives further
insight in the comparison with the state-of-the-art method.
Indeed, [7, Theorem 2.1] shows that a statistically consis-
tent alignment can be obtained only when filtering the curves
and aligning the low-frequency information. Therefore, an
approach based on the spectral information is more suscepti-
ble to achieve good alignment by comparison to the method
of [1].

3.2 Results on real data
We now wish to compare our method to the state-of-the-art
for the alignment of heart cycles, in order to estimate the av-
erage signal. We provide the study of the signal presented in
Figure 1, which was obtained from the Hadassah Ein-Karem
hospital, and is a recorded signal stemming from a healthy
heart.

3.2.1 Experimental protocol

In order to obtain a series of heart cycles, we first make a
preliminary segmentation using the method of [3], namely
alignment according to the local maxima of the heart cycle.
We then apply our method, and compare it to the alignment
obtained by comparing the mean curve to a shifted curve one
at a time. We took in this example K = 30 and λ = 10.

3.2.2 Results

Results on real data are presented in Figure 4. It can be no-
ticed that the semiparametric method outperforms the stan-
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(a) Aligned heart cycles and average signal (black dotted curve)
using the standard method
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(b) Aligned heart cycles and average signal (black dotted curve)
using the proposed method

30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 104

(c) Aligned heart cycles using the standard method, zoom for
the first 30 curves
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(d) Aligned heart cycles using the proposed method, zoom for
the first 30 curves

Figure 4: Comparison between the state-of-the-art and the proposed method for the alignment of heart cycles (arbitrary units).
A semiparametric approach appears more appealing to align cycles correctly, and allows to separate more efficiently the
P-wave, the QRS complex and the T-wave on the average heart cycle.

dard method, by comparing Figures 4(d) and 4(c). More-
over, when computing the average of the reshifted heart cy-
cle, we observe that our method allows to separate more effi-
ciently the different parts of the heart cycle; indeed, the sepa-
ration between the P-wave, the QRS-complex and the T-wave
are much more visible, as it can be seen by comparing Fig-
ure 4(a) and Figure 4(b). This makes the obtained average
heart cycle more relevant, since small variations on the posi-
tion of the QRS complex, which varies quickly, can yield an
average where the shape information on the QRS-complex is
lost.

4. CONCLUSION

We proposed in this paper a method for curve alignment and
density estimation which showed good performances on sim-
ulations, even when the noise variance is high. On real ECG
data, the proposed method outperforms the standard func-
tional data analysis method, thus leading to a more signifi-
cant average signal. The theoretical study of the proposed
estimator, in terms of consistency and rates of convergence,
will appear in a future contribution.
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applications. PhD thesis, Université Paris XI, 2006.
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