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ABSTRACT

The estimation of several unknown channel amplitudes and
taps in a multipath environment is an important problem
when designing receivers both for communication and nav-
igation purposes. A popular approach for these estima-
tion problems are methods solving the maximum likelihood
(ML) problem for each dimension separately like the expec-
tation maximization (EM) approach and the more sophisti-
cated space alternating generalized expectation maximiza-
tion (SAGE) algorithm. However, both methods require a
high computational complexity when used in spread spec-
trum systems due to long spreading sequences. Therefore,
we apply methods for decreasing the computational com-
plexity before executing the iterative estimation algorithms.
The respective performance is assessed by means of com-
puter simulations for a UMTS scenario which show a negli-
gible degradation in estimation accuracy despite a substantial
complexity reduction.

1. INTRODUCTION

The precise and low complex synchronization and chan-
nel estimation are important tasks in digital spread spec-
trum communications systems. More and more applications
involve also positioning applications using time of arrival
(TOA) or time difference of arrival (TDOA) measurements
between the base stations (BSs) and the mobile station (MS).
A precise location determination requires therefore the syn-
chronization of the line of sight (LOS) path also with sub-
chip accuracy. The effect of multipath propagation causes
severe errors in position estimation, which need to be miti-
gated. Moreover, the signal to noise ratio (SNR) of the re-
ceived signals from the different BSs can be very low, as the
MS usually communicates with one or two BSs, but needs to
synchronize and track the signals of three or more BSs for
positioning. In [1], T. Bertozzi analyzed a scheme for joint
time delay and channel tap estimation using particle filters in-
stead of applying a classical channel estimator. In [2], the au-
thors analyzed adaptive tracking methods for the separation
of closely spaced multipaths in the context of Rake channel
estimation. J. Selva developed in [3, 4] the framework for
complexity reduced maximum likelihood (ML) channel es-
timation (CE) methods in navigation receivers. ML CE in
reduced dimension for the separation of superimposed wave-
forms has been analyzed with the expectation maximization
(EM) algorithm in [5, 6]. The transition to parameter esti-
mation for spread spectrum signals in mobile communica-
tions can be found as space alternating generalized expecta-
tion maximization (SAGE) in [7]. In [8], ML CE in reduced
dimension for direct sequence code dividion multiple access
(DS-CDMA) systems in mobile systems has been investi-
gated and compared to the performance of minimum mean
square error (MMSE) CE. In this paper, we apply different
subspace methods before applying the EM and SAGE algo-
rithm for high resolution channel parameter estimation [9]
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and assess their performance with respect to theoretical lim-
its of ML CE (cf. the Cramer-Rao bound (CRB) analysis in
[10], and the extensions of the CRB analysis in [6, 11] to-
wards the Ziv-Zakai bound (ZZB)).

Notation: Vectors (e. 2.y € CN) and matrices are denoted
by small and captial bold letters. ‘E[e]’, ‘8, “T", ‘«’, and
‘H’ denote the expectation, estimation, transposed, complex
conjugate, and Hermitian operators. The operator ‘®’ ex-
presses the calculation of the Kronecker product between
two matrices. If applied to a vector & € CV, the operator
diag{x} € C¥*N denotes the matrix with the elements of
x € CN on its diagonal. y = FFT{z} € C" represents the
fast Fourier transform (FFT) of a vector € CV whose di-

mension N is a power of 2. The i-th column of the unit

matrix 1y € CV*N is termed eSN). Oy € CN represents the

N-dimensional column vector with zero elements.

2. CHANNEL MODEL

In order to demonstrate the influence of the multipath prop-
agation on the estimation performance of the LOS path and
thereby on the position estimation of the MS, the channel is
modelled as a fixed channel of length L

L
h(t,1) =h(1) = Y a;8(t— 7). )
=1

where the number of channel coefficients L is assumed to
be known to the receiver. The results in this paper can be
considered as a worst case bound compared to the typically
considered Rayleigh fading channel model, because multi-
path propagation undergoing Rayleigh fading always causes
smaller positioning errors than fixed multipath propagation.

3. INTERPOLATION MODEL

As a pulse shape for the transmission considered in this pa-
per, we make use of root raised cosine (RRC) pulses g(¢)
which are defined by an one sided limit frequency fy and a
roll off factor B. We may write the direct sequence spread
spectrum (DS-SS) transmit (Tx) signal as

M—1 N—1
S([) = Z dp7m Z Cp7ng(t 7mT7nTc),
m=0 n=0
M—1 N—1
+ Z dD,m Z CD,ng(t —mT — nTC) 2
m=0 n=0

where T and Tc = 1/Rc denote the frame duration and chip
duration with Rc being the chip rate. The pilot and data sym-
bol sequences dp ,, and dp ,, m=0,...,M —1 are taken from



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

quartenary phase shift keying (QPSK) modulation. M code-
words form the considered time interval for CE [12]. The
spreading code sequences cp,,n =0,...,N — 1 for the pilots
and ¢cpy,n =0,...,N —1 for the data are orthogonal Gold
codes of length N in this contribution. In order to obtain a
suitable matrix vector factorization beginning from Eqn. (2),
we choose the sampling frequency fs as integer multiple
of the chip rate Rc yielding Q = fs/Rc samples per chip.
If we assume an observation interval of duration MNTc,
we can define M successive signal vectors s, € CN¢, m =
1,....M as s, = [s[(m—1)NQ],...,s/mNQ—1]]", with
skl =s(k/fs), k=(m—1)NQ,...,mNQ— 1. Therefore, the
sampled Tx signal in matrix vector notation in Eqn. (2) is s =
[sT, 80T e CMNC and s,, = dp mCpg +dp nCpg, m =
1,....M. Cp,Cp € CNOMep are the pilot and data code
matrices, and g € CMP is the zero padded sampled RRC
pulse. Npp is chosen as the next power of two exceed-
ing or equal to the number of pulse samples Np, for the
FFT based pulse interpolation. Therefore, g € CPP con-
tains the Np samples of the RRC pulse padded two times
with Nz = (Npp — Np)/2 zeros, i.e., g = [Oﬁz,g(f(Np -

1)/(2f5))a s 78((NP - 1)/(2f5))5OxZ]T
The pulse interpolation enables the shifting [3]

g(1) ~ F~'diag{FFT{g}} ¢ (). 3)

The columns of Cp € CN*Mep and Cp e CNOxNep
are circularly shifted versions of cp ® eEQ) e CNe

and cp ®eEQ) € CN2.  The matrix F~! e CNepxNpp
is the permuted inverse Fourier matrix (F‘l) W =
exp (j (27/Nep) (k — Nep/2) (¢ — Npp/2)), k.t = 1,...,Npp.
¢ (1) € C¥? is a Vandermonde vector, i.e., (¢ (7)) =
exp(—j(2wQ/Npp)(k — Npp/2)T), k =1,..., Npp.

Having determined the pulse interpolation in Eqn. (3),

we can now formulate the interpolation representation of
the spreading signal using the pilot and data code matrices

Cp,Cp € CNONer a5 5(1) = [8](7),...,s0,(7)]T € CMNO,
where s,,(7) = dpnCpg(7) + dpmCpg(7) = dpmsp(T) +
dD’mSD(‘L') form= 1, ce. ,M. Cpg(‘L') = SP(T) and CDg(‘L') =
sp(7) represent the interpolated pilot and data signal.

At this point it is convenient to derive a second interpo-
lation representation for the pilot and data code cp,cp € CV.
The code interpolation bases on the same interpolation
method as Eqn. (3). Again, the two distinct parameters are
fn as band limiting frequency fs as sampling frequency
of the RRC pulse. A Dirac delta function §(¢) which is
transformed into the frequency domain, bandlimited to
N, and transformed back into time domain yields the sinc
function sinc(r) = sin(2x fnt) /(7). We proceed now in the
same way as before with the interpolation of the RRC pulse:
& € CNep contains the Np samples of the sinc function padded
two times with Nz = (Npp — Np)/2 zeros to reach Npp; § =

0N, 6 (—(Ne—1)/(2fs)),...,6 (Ne —1)/(2f5)),08,]T €
CNer | The interpolation representation (cf. Eqn. 3) states

§(7) ~ F~'diag {FFT{8}} ¢ (7). )

We have as interpolated pilot code cp(t) = Cpd(7) and
cp(7) = Cpd(7) as interpolated data code.

4. TRANSMISSION MODEL

After transmission over the channel (cf. Eqn. (1)), we obtain
the receive (Rx) signal vector

L
y=Y as(n)+n==S(r)a+neC’C (5
(=1

where n(t) ~ A;(0,62) describes the zero-mean addi-
tive white Gaussian noise (AWGN) of the power O',% =
E[|n(z)|2], and S(7) = [s(11),...,8(1)] € CMNOXL ang

a = [ay,...,ar)T € CF form the signal matrix and the am-
plitude vector. The SNR 7 is defined according to Eqn. (5) as

v=(Th i lal) /o2,

M  successive observation vectors 1y, € CNC
(m = 1,...,M) form the whole observation vec-
tor y = [yl,...,y,]T € CMNC, Therefore, the m-

th observation vector y, € CNC in Eqn. (5) is:
Yn = Yo arsm(t) + ny € CVC. Similar, we can
write the noise vector as n = [n],...,n}]T € CMNC,

ny, = [n((m—1)NQ/fs,...,n((mNQ —1)/fs)]T € CNC.

5. ML CHANNEL ESTIMATION IN REDUCED
DIMENSION

For y € CMNC| the ML estimate {a,7} € C is found ac-

cording to {a,#} = argmin||y — S(7)al3. At this place,
{a,r}

it is important to mention that the solution of the non-

convex ML optimization problem refers to the tracking range

[—2T¢,2Tc] [4, 13] for the estimation of the unknown chan-

nel taps 7 € CL. If there was any channel tap outside the
tracking range, the system would leave the tracking range,
the lock would be lost and a reacquisition procedure would
be necessary. To decrease computational complexity, we pro-
pose to use the following two stage complexity reduction
in Subsec. 5.1 which is also adapted to the defined tracking
range to compute the ML estimate.

5.1 Bank of Correlators and Principal Components

As a first step, the pilot symbols in the sampled Rx vector y
are demodulated and filtered codeword by codeword by an
orthonormalized correlatorbank of Ncc pilot code matched
correlators (CMCs) Qcc € CN@*Nec

This matrix Qcc € CN@Nec is obtained from a
QR decomposition of Ccc = [cp(7G,1);--->CP(TG N )] =
Qcc Rcc yielding the output of the correlatorbank as

M M L
Ycc = Z d;;,ngCym = Z dli,inQIéIC ( Z Sm(T/Z) + nm)
m=1 m=1 /=1
L M
= MQ¢c Y se(m)+ ), dfi’ngcnm eClec, ()
(=1 m=1

where we have exploited the orthogonality between the pi-
lot CMC matrix Qcc € CV?*Nce and the data code ma-
trix Cp € CNOxNec TG = [TG,I;---,TG,NCC]T € CNece de-
fines the respective positions of the Ncc CMCs. The
index represents the abbreviation Canonical Components
(CCs), which is an alternative expression for signal com-
pression using matched filter banks [13]. In the follow-
ing further complexity reduction using principal compo-
nents (PCs), the introduction of the filtered pilot signal
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spcc(t) = Q8- sp(t) € CNec is helpful. We calculate the au-
tocorrelation matrices R, = E [Sp (1) sp (‘L')H} € CNOxNO

and R, = E[SP,CC (7) SP,CC(T)H] = Q8-Rs,Qcc €

CNeexNee exploiting a-priori information about the channel
taps. Here, we choose a robust a-priori assumption that is a
uniform distribution in [—27¢,27¢] [3, 4]:

2T

R, —E {SP(T) sp (T)H} _ /_ZTC sp(7) SP(T)H ﬁdr.
(7

For the second stage of complexity reduction, it is neces-
sary to calculate the eigenvalue decomposition (EVD) of

SPCC QAQH Q= [QI7---»(INCC] € CNecxNee cop-
tains in its columns the respective eigenvectors and A =

. T . .
dlag{[ll,m,iwcc} } € CNecxNee js the diagonal ma-
trix containing the eigenvalues sorted in descending order,

i.e. Af > -+ > Ano > 0. For a given number Npc < Ncc

of PCs, the autocorrelation matrix R, .is approximated by

N
Rpce = Y05 Megiqy’. As aresult, we have

ypc = Qbcycc € CYee, 8

where Qpc = [qi,...,qnp] € CNecXMe s the PC
eigenspace matrix. At this place it is also convenient
to define the twofold filtered pilot signal sppc(7) =
Q5-Ql sp(7) € CMc needed in the following subsections.

We can now determine the ML estimate for ypc and
SRpc(T)a € CMec (SRpc(T) = [SRpc(‘L'l),... ,SRpc(TL)] €
CMcxLy instead of y € CYNC and S(7)a € CMNC,

5.2 Expectation Maximization Algorithm

Alg. 1 Computation Steps for the EM Algorithm

1: Input: observation vector Ypc € CNec, maximum num-
ber of iterations Njermax, estimation accuracy TOL,

2: initial estimations {#(©) € CL,a(®) e CL}, coefficients

Be, £=1,...,L, iterations counter k = 0
3: repeat
4. for/=1,...,Ldo
L (k (K Ak
2 = (1 = Bpaserc(t) + Bilyec -
Ak A(k
Ehi_ 1o pedys serc(3y)))) € CYee
6: end for
7. forl{=1,....Ldo
8: T[(Hl) = argmax{|3p,pc(fg)Hafc§k) |2}
T
Akt ] A(k+1)\H o (k A(k+1
o: al™t! = sppc (3 )2 /| sppe (21|13
10:  end for
11: k—k+1

12: until H7A'(k) —TH% + ||fl(k) - (1”% < TOL or k > Nitermax

Alg. 1 sums up the different steps belonging to the EM
algorithm. All pairs of channel parameters {t;,a,}, ¢ =

1,...,L are estimated in parallel beginning with some
initial estimates #(©) = [%fo),...,féo)]T € CL and & =
[d(lo), e ,&(LO)]T € CL for the channel taps and amplitudes. We

observe the typical structure with the expectation (E) step
(line 5) followed by the maximization (M) step (lines 8 to 9).

Relative Energy Error

‘L'/TC

Figure 1: CMC and PC Compression Quality

The iterative parallel estimation of {t;,as}, £ =1,...,L is
repeated until a required estimation accuracy is achieved or
the maximum number of iterations Nyermax 1S €xceeded.

5.3 Space Alternating Generalized Expectation Maxi-
mization Algorithm

Alg. 2 Computation Steps for the SAGE Algorithm
1: Input: observation vector ypc € CNec, maximum num-
ber of iterations Njermax, €stimation accuracy TOL,
2: initial estimations {#(*) € CL,a(® € CL}, iterations
counter k =0

3: repeat
4. for/=1,...,Ldo
o (k (k1 k
5: () = ypc — Xi l|a§/+)5PPC(T[(/+)) -

Z/Z/ (4] algic)Sppc(Té/ )) € CNec

k+1 .
6: Té +) _ argmax{|stc(Tg) z, )|2}
T
Akt 1 A(k1)H o (k (k+1)
7 af Y = sppe (3 /| seec () 3
8: end for
9: k—k+1

10: until |7 — 7|3+ [a® — a3 < TOL or k > Nitermax

Alg. 2 shows the successive steps belonging to the SAGE
algorithm. Contrary to the EM algorithm, all pairs of chan-
nel parameters are estimated sequentially, and again, we can
observe in line 5 the E step and in line 6 and 7 the M step.
This iterative estimation is repeated at most Nyermax times or
is stopped earlier if a required accuracy is already reached.

6. SIMULATIONS AND RESULTS

The simulations for the reduced complexity (Ncc = 40
CMCs with spacing 1/ fs and successive Npc = 20 PCs) es-
timation of a L = 2 tap channel ({a; = 1,7, = —0.1-T¢}
and {a; = 1/\/57 7 = 0.3-T¢}) are the averaged result over
Nchannel = 10000 random channel realizations. The qual-
ity of the complexity reduction is shown in Fig. 1. We
see that within the considered delay interval [—27¢,2T¢],
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Figure 2: RMSE of LOS Path Estimation Versus the SNR for
Different Estimation Algorithms and Degrees of Freedom

the relative energy error || Pecsp(7)||3 / ||sp(7)|[3 is approx-
imately zero. The orthonormal projection matrix Ppc =
Ino —QccQrc Q]}}C Q(}:IC projects onto the orthonormal com-
plement of the CMC correlator bank and the PCs. Previous
investigations in [13] showed that the loss in estimation ac-
curacy with respect to the root mean square error (RMSE)

is proportional to 1/(1 —||Ppc.9p(r)|\§/||3p(r)|\§) ~ 1.

Therefore, the choice of the investigated complexity reduc-
tion allows us to restrict the further simulation results to the
consideration of the reduced complexity implementations.
All other parameters according to [12] are listed in Tab. 1,
which are typically for a UMTS system. In the resulting plot

in Fig. 2, which shows the RMSE , /E [m —1 ﬂ /Te of the

LOS path estimation for the SNR range between —40dB and
40dB, we can see the performance of the LOS path and there-
fore the position estimation of the two complexity reduced
implementations with different degrees of freedom. The re-
sults are compared to the theoretical optimum performance
for unbiased estimators, the CRB. We observe that the two
estimators with degree one show the bias due to the multipath
propagation, even at very high SNR values. The consecutive
position error would be at about 40m. Therefore, a precise
position estimation requires more than one degree of freedom
in the optimization. If we resort to the two and three path
EM algorithm, the CRB can be approximated very closely
within the medium SNR range. Contrary, the SAGE algo-
rithm shows a slight more adaption to the noise in the SNR
range between —25dB and 15dB. Another important obser-
vation in Fig. 2 is the saturation of the RMSE values for SNR
values above 10dB shown by the two and three path estima-
tors, which is due to EM and SAGE related solutions of the
ML estimation problem. We would observe this saturation
effect also for the EM and SAGE algorithm without com-
plexity reduction. In Subsec. 5.1, we have already shown that
the complexity reduction only leads to a slightly increased
variance, and not to any bias which is responsible for satu-
ration effects. On the one hand, the RMSE curves saturate
at a high SNR and on the other the CRB is crossed at very
low SNR. The RMSE curves show a saturation at a value of

parameter | value
roll off factor (RRC pulse): | B =0.22
one sided limit frequency (RRC pulse): | fnx =5MHz
physical sampling frequency: | fs =20 MHz
chiprate: | Rc =4MHz
code length (Gold code): | 255
number of pulse samples: | Np =55
number of transmitted pilots: | M =10

Table 1: List of Used Simulation Parameters

about 0.5m for increasing SNR which is a quite precise po-
sition determination. We can give two possible explanations
for RMSE values which are below the CRB for low SNR val-
ues. As a first reason, we resort to the limited tracking range
defined at the beginning in Sec. 5. The ML search within
the defined tracking range in line 8 of Alg. 1 and line 6 of
Alg. 2 is implemented by means of a onedimensional New-
ton algorithm. The suggested Newton optimization methods
require the limitation to a certain search range which is set to
the considered tracking range. Once the noise is too high, the
RMSE saturates and cannot follow the theoretical CRB any
more. The second reason follows the observations in [9] and
explains why in [6, 11], the CRB was extended towards the
Z7B. Once the noise power exceeds a certain level, the esti-
mation algorithms for L = 1, L =2 or L = 3 undergo a model
mismatch, because this high noise power would require to
estimate an infinite number of paths. The hypothesis test for
the discrimination of different channel lengths L suggested
in [13] also confirms these observations. This test bases on
the evaluation of several log-likelihood functions choosing
the respective one with the least likelihood value. Clearly, a
too high noise level affects the respective function values and
may therefore degrade the testing performance substantially.

7. COMPUTATIONAL COMPLEXITY

The following complexity analysis counts both one com-
plex addition as well as one complex multiplication as one
floating point operation (FLOP). Tab. 2 list the computa-
tional complexity of the EM and SAGE algorithm with and
without the suggested complexity reduction methods. The
above half of Tab. 2 shows the computational complexity
of the E and M step necessary to implement the EM and
SAGE algorithms. This complexity is due to the correla-
tion of spreading sequences of length NQ. If we consider
the computational complexity of the implementation of the
compressed signals in the below half of Tab. 2, the com-
plexity of the correlation only depends on Npc. As ad-
ditional a-priori complexity, we have for the CC analysis

o (NQ (NCC)Z) and O ((NCC)ZNPC) for the PC decompo-

sition, respectively. Dependend on the channel length L and
on the needed number of iterations Nyerations Until conver-
gence, we obtain for the assumed parameter values a max-
imum complexity of L - Nyerations - 107 complex flops, but for
the implementation resorting to the two steps of complexity
decreasing, L-2 - Nyerations - 10° +5 - 10% complex flops suffice.
Therefore, the proposed CC and PC algorithms allowed to
decrease the computational complexity of the whole simula-
tion at least by a factor of 2 for L = 1 and MNyerations = 1. This
gain increases for a growing model order L and an increas-
ing number of iterations Nyerations- Fig. 3 shows the average
number of iterations Nyerations fOr the investigated estimation
algorithms for the respective degrees of freedom dependend
on the SNR. We see that the biased estimators for L = 1 con-
verge after two iterations to the ML solution independend of
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EM or SAGE without CC and PC method
E and M step ((L + I)NQ +1 )NItermaxNChannel
EM or SAGE with CC and PC method
E and M step ((L + 1)NPC + 1)NItermaxNChanne]
Qcc 0 (NQ(Nec)?)
EVDof Ry | O (Ncc)szc)

Table 2: Computational Complexity for EM and SAGE Im-
plementations Before and After Complexity Reduction

—— EM, one path
—©— EM, two paths
EM, three paths
—»— SAGE, one path
SAGE, two paths
SAGE, three paths

Average Number of Iterations

-30 -20 -10 0 10 20 30 40

SNR [dB]

Figure 3: Average Number of Iterations Versus the SNR for
Different Estimation Algorithms and Degrees of Freedom

the respective SNR value. Contrary, for L = 2 the advantages
of the SAGE implementation compared to EM algorithm be-
come clear. The number of iterations can be decreased sub-
stantially by the sequential (SAGE) and not the parallel (EM)
estimation procedure, especially for very low and very high
SNR values. For a too high model order of L = 3, this effect
is only still true for a very low noise power. This observation
fits the RMSE plot in Fig. 2, because in the medium SNR
range of —25dB to 15dB, the SAGE algorithm for L = 3
degrees of freedom showed an adaption to the noise in the
form of an increased RMSE, leading to a worse convergence
behaviour. It is also important to mention that for exteme
high SNR values above 35dB, the number of needed itera-
tions does not depend any more on the model order L of the
estimation algorithm for sequential SAGE estimator.

8. CONCLUSIONS

This contribution dealt with complexity reduced approaches
for maximum likelihood (ML) channel estimation (CE) in
reduced dimensions. The tremendous complexity reduc-
tion was achieved using a bank of code matched correlators
(CMCs) followed by the standard principal component (PC)
approach. Previous investigations had shown that a direct PC
application is optimum with respect to energy compression
error and estimation bias. However, the CMC prefiltering be-
fore was necessary for two reasons: on the one hand for the
separation of superimposed orthogonal spreading sequences
in the receiver, and on the other, a direct PC filtering would

require too much computational complexity. The CMC and
PC filtering matrices have been calculated in advance, and
the iterative ML CE has been implemented resorting to com-
pressed observation and signal vectors. Simulation results
showed that the positioning bias introduced by the chosen
complexity reduction is less than 0.5m in a UMTS scenario.
Therefore, we have designed a variant of expectation maxi-
mization (EM) and space alternating generalized expectation
maximization (SAGE) based ML CE fitting especially mass
market receivers with critical signal processing complexity.
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