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ABSTRACT
In this paper we propose a fully automatic method for vari-
ance reduction of spectrum estimates. We use the technique
of cepstrum thresholding, named SThresh, which is shown
to be an effective, yet simple, way of obtaining a smoothed
non-parametric spectrum estimate of a stationary signal. We
obtain the threshold via a cross-validatory scheme and the re-
sults are shown to be in agreement with those obtained when
the spectrum is fully known. We name our proposed method
CV-SThresh.

1. INTRODUCTION

Let us consider a stationary, discrete-time, real-valued signal
x(t), t = 0,1,2, . . ., with covariance sequence {rk}∞

k=−∞ and

power spectral density (or spectrum) Φ(ω) (ω ∈ [−π,π]).
The idea in this paper is to estimate the spectrum from a set

of observed samples {x(t)}N−1
t=0 of the signal.

An extensively studied and commonly used estimator of
Φ(ω) is the periodogram given by (see, e.g., [1–3])

Φ̂P(ω) =
1

N

∣∣∣∣∣
N−1

∑
t=0

x(t)e−iωt

∣∣∣∣∣
2

, (1)

where the subscript P denotes the “Periodogram” estimate.

Φ̂P(ω) can also be written in terms of the covariance se-
quence as

Φ̂P(ω) =
N−1

∑
k=−(N−1)

r̂ke−iωk, (2)

where r̂k denotes the following estimate of rk

r̂k =
1

N

N−1

∑
t=k

x(t)x(t − k)

k = 0, ...,N −1 ; r̂−k = r̂k. (3)

Also, let

ωl =
2π
N

l; l = 0, . . . ,N −1, (4)

denote the Fourier grid of the angular frequency axis. As is

well known, Φ̂P(ωl) can be computed efficiently using a fast
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Fourier transform (FFT) algorithm.

The resulting periodogram estimate is an asymptotically
(in N) unbiased but inconsistent estimate of the underlying
true spectrum (see, e.g., [1–3]). In particular, the estimate
suffers from a high variance which does not converge to zero
as N increases, but to Φ2(ωl). To overcome this problem,
many different smoothing techniques have been proposed,
such as various windowing methods (in both the time, lag and
frequency domain). These techniques suffer from the draw-
back of having to carefully select the window and the span,
for which there are no clear-cut guidelines. Data-dependent
choices of the window span are hard to make, due to the
complicated statistical properties of the covariance estimates.
The same argument also applies to time-domain smoothing.
The recently proposed cepstrum based thresholding method
[4, 5], called SThresh in [6], uses the very simple statistical
properties of the cepstrum estimate [4] [7] to smooth the pe-
riodogram in an almost automatic way. We say almost, since
the threshold level must be selected manually by a procedure
for which there are clear guidelines and for which only mi-
nor prior information is needed. In this paper, we will take
this cepstrum based thresholding method one step further, by
using a cross-validation (CV) scheme to fully automate the
smoothing procedure.

The paper is outlined as follows. In the next section we
will introduce the cepstrum and the cepstrum based smooth-
ing technique, SThresh. In Section 3 we describe the CV
scheme for choosing the optimal threshold and in Section 4
we present some numerical examples to illustrate the benefit
of the proposed algorithm.

2. SMOOTHED SPECTRAL ESTIMATION VIA
CEPSTRUM THRESHOLDING – STHRESH

Given a signal x(t), the cepstral coefficients are defined as

ck =
1

N

N−1

∑
l=0

ln[Φ(ωl)]eiωl k

k = 0, . . . ,N −1, (5)

where it is assumed that Φ(ωl) > 0,∀l. The cepstral coef-
ficients have several interesting features, one of which is a
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Figure 1: (a) True spectrum, Φ(ω), and (b) the periodogram

estimate, mean[Φ̂P(ω)]± st.dev.[Φ̂P(ω)], versus frequency,

for a broadband MA signal. N = 512.

mirror symmetry:

cN−k = ck k = 0,1, ...,
N
2

, (6)

which means that only half of the sequence, c0, ...,c(N/2), is
distinct. The other half is obtained from c1, ...,c(N/2)−1 via
(6).

Using the periodogram estimate in (1), a common es-
timate of the cepstral coefficients is obtained by replacing

Φ(ω) in (5) with Φ̂P(ω), which gives [4] [7]

ĉk =
1

N

N−1

∑
l=0

ln[Φ̂P(ωl)]eiωl k + γδk,0 k = 0, ...,M, (7)

where

δk,0 =
{

1 if k = 0
0 else,

(8)

M = N
2 and γ = 0.577216 . . . (the Euler’s constant).

It can be shown (see, e.g., [4]) that in large samples, the
estimated cepstral coeffcients {ĉk}M

k=0 are independent nor-
mally distributed random variables:

ĉk ∼ N (ck,s2
k) (9)

with

s2
k =

{
π2

3N if k = 0,M
π2

6N if k = 1, ..,M−1.
(10)

With the above equations in mind, the idea behind cep-
strum thresholding is straightforward. Let c̃k be a new es-
timate of ck and note that c̃k = 0 has a mean squared error
(MSE) equal to c2

k . This estimate is preferred to ĉk as long as

c2
k ≤ s2

k . Now let

S = {k ∈ [0,M] | c2
k ≤ s2

k} (11)
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Figure 2: (a) IMSE(Φ̂cep(ω)) and (b) the cross-validatory

estimate of IMSE, CVMSE(Φ̂cep(ω)), versus μ , for the sim-

ulated broadband MA signal. N = 512.

and let S̃ be an estimate of the set S. Thresholding {ĉk}k∈S̃
gives the following new estimates of ck:

c̃k =
{

0 if k ∈ S̃
ĉk else

k = 0, ...M. (12)

A good estimate of S is given by (see [5] for details):

S̃ = {k ∈ [0,M] | |ĉk| ≤ μsk} (13)

where the parameter μ controls the risk of concluding that
|ck| is “significant” when this is not true, the so called “false
alarm probability”. The following values of μ are recom-
mended in [4, 6] for N ∈ (128,2048):

μ = μ0 +
N −128

1920
, (14)

where

μ0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 for a broadband signal with
small dynamic range

3 for a broadband signal with
large dynamic range

2 for a narrowband signal with
very large dynamic range.

(15)

This means that μ will belong to the interval (μ0,μ0 + 1).
For other intervals of the sample length, N, similar rules can
be given.

The smoothed spectral estimate corresponding to {c̃k} is
given by:

Φ̃cep(ωl) = exp

[
N−1

∑
k=0

c̃ke−iωl k

]
l = 0, ...,N −1, (16)

where the subscript cep signifies its cepstrum dependence.
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Figure 3: Smoothed spectrum, mean[Φ̂cep(ω)] ±
st.dev.[Φ̂cep(ω)], for the simulated broadband MA sig-

nal. N = 512, μopt = 4.4.

The final scaled spectrum estimate Φ̂cep(ωl) is then given by

Φ̂cep(ωl) = α̂Φ̃cep(ωl) l = 0, . . . ,N −1, (17)

where

α̂ =
∑N−1

l=0 Φ̂P(ωl)Φ̃cep(ωl)

∑N−1
l=0 Φ̃2

cep(ωl)
. (18)

The above outlined smoothing scheme was called Simple
Thresholding, or SThresh, in [6]. We now proceed to auto-
mate the selection of μ , using a cross-validation scheme.

3. CROSS-VALIDATION BASED THRESHOLD
SELECTION – CV-STHRESH

The idea of using cross-validation for selection of smoothing
parameters is quite appealing. For example, in [8, 9], the
selection of the bandwidth of estimates that are based on a
discrete periodogram average, by means of cross-validation,
is discussed. Here we apply a similar idea to find an optimum
of the threshold μ in (13). This optimal threshold will then
be used to smooth the spectrum with the method outlined in
Section 2.

If we knew the true underlying spectrum Φ(ω), we would
find μ by minimizing the integrated mean squared error

(IMSE) of Φ̂cep with respect to μ , where

IMSE(Φ̂cep) =
1

N

N−1

∑
j=0

E
[
Φ̂cep(ω j)−Φ(ω j)

]2
(19)

and E[·] denotes the expectation.
Unfortunately, in most practical situations, Φ(ω) is un-

known and computing the IMSE is therefore not possible.
However, cross-validation schemes can be utilized to find an
estimate of IMSE, for instance, the following estimate given
by (see [8, 9])

CV MSE(Φ̂cep) =
1

N

N−1

∑
j=0

[
Φ̂− j

cep(ω j)− Φ̂P(ω j)
]2

. (20)

−4 −3 −2 −1 0 1 2 3 4
−500

0

500

1000

1500

2000

2500

3000

3500

Frequency

(a)

−4 −3 −2 −1 0 1 2 3 4
−500

0

500

1000

1500

2000

2500

3000

3500

Frequency

(b)

Figure 4: (a) True spectrum, Φ(ω), and (b) the periodogram

estimate, mean[Φ̂p(ω)]± st.dev.[Φ̂p(ω)], versus frequency,

for a narrowband ARMA signal.N = 512.

Here, Φ̂− j
cep(ω j) is the leave-one-out (crossvalidated) version

of Φ̂cep(ω j), constructed such that Φ̂− j
cep(ω j) is independent

of Φ̂P(ω j) for all j. This is achieved by first calculating

ĉ− j
k =

1

N

N−1

∑
l=0
l �= j

ln[Φ̂P(ωl)]eiωl k. (21)

This leave-one-out estimate can be efficiently obtained from
ĉk in (7) as follows

ĉ− j
k = ĉk − ln[Φ̂P(ω j)]eiω jk. (22)

The cepstral coefficients are then thresholded according to
(12) for a particular choice of μ . Finally, the leave-one-out
estimate in (20) is given by

Φ̂− j
cep(ω j) = α̂ exp

[
N−1

∑
k=0

c̃− j
k e−iω jk

]
j = 0, . . . ,N−1, (23)

where c̃− j
k denotes the thresholded version of ĉ− j

k and α̂ is

obtained by replacing Φ̃cep(ω) with its leave-one-out esti-

mate Φ̃− j
cep(ω) in (18). The optimal thresholding parameter

μ is then the one that minimizes the criterion (20).

In summary, the proposed smoothing scheme, named
CV-SThresh makes use of the following steps to find the op-
timal threshold parameter, say μopt :

1. From x(t), t = 0,1, . . . ,N −1, compute Φ̂P(ω) and ĉk.

2. Choose a μ ∈ [0,μmax]. Empirical studies have shown
that taking μmax = 10 is a good general choice.

3. Find an estimate of IMSE(Φ̂cep(ω)) by efficiently eval-

uating CV MSE(Φ̂cep(ω)) in (20). The efficient way of

obtaining ĉ− j
k in (22) reduces computation by a factor of

logN.
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Figure 5: (a) IMSE(Φ̂cep(ω)), and (b) the cross-validatory

estimte of IMSE, CVMSE(Φ̂cep(ω)), versus μ , for the simu-

lated narrowband ARMA signal. N = 512.

4. Repeat the above step over the range [0,μmax].
5. Find the value of μ that minimizes CV MSE(Φ̂cep(ω)),

i.e., μopt = argminμ∈[0,μmax]CV MSE(Φ̂cep(ω)).
6. Finally compute the smoothed spectrum as done in Sec-

tion 2, using μopt as a threshold.

4. NUMERICAL EXAMPLES

We will illustrate the performance of the proposed CV-
SThresh method by using the broadband and narrowband ex-
amples in [4] and the ocean wave data example in [6].

4.1 Broadband example

The first example is a broadband, second-order MA pro-
cess. The signal x(t) was generated using the moving average
equation

x(t) = e(t)+0.55e(t −1)+0.15e(t −2) t = 0, . . . ,N −1,
(24)

where e(t) is a zero mean, unit variance normal white noise.
We generated 1000 realizations, each of length N = 512 of
the process. In Fig. 1 we show the true spectrum and the
mean and standard deviation of the periodogram. These fig-
ures should be compared with the spectrum smoothened via
CV-SThresh, shown in Fig. 3. We clearly see that the vari-
ance of the smoothed spectrum is significantly smaller than
that of the peridogram. The optimal μ can be obtained from
Fig. 2(a) by finding the μ corresponding to the minimum
value of IMSE. It is clearly seen from Fig. 2 that the true
and the CV estimate of IMSE have a minimum at almost the
same point. Cross-validation therefore gives a nearly optimal
value of μ for thresholding.
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Figure 6: Smoothed spectrum, mean[Φ̂cep(ω)] ±
st.dev.[Φ̂cep(ω)], for the simulated narrowband ARMA

signal. N = 512, μopt = 2.6.

4.2 Narrowband example
The above simulations are repeated for a narrowband ARMA
process represented by

x(t)−1.6408x(t −1)+2.2044x(t −2)−1.4808x(t −3)
+0.8145x(t −4) = e(t)+1.5857e(t −1)

+0.9604e(t −2) t = 0, . . . ,N −1 (25)

where e(t) is again a zero mean, unit variance normal white
noise. We generated 1000 Monte-Carlo simulations, each of
length N = 512. As described in the broadband example, the
optimal threshold parameter, μopt , has been obtained as the
threshold that yields the minimum cross-validatory estimate
of IMSE. For comparison, we have plotted the true spectrum
together with the mean and standard deviation of the peri-
odogram in Fig. 4. Fig. 5 shows the IMSE and CVMSE
curves versus μ , used to find μopt . Again, the IMSE and its
estimate CVMSE give similar results. Fig. 6 shows the mean
of the CV-SThresh smoothed spectrum together with its stan-
dard deviation, obtained using μopt . Comparing Fig. 6 with
Fig. 4, we see that the variance has been reduced but a bias
has been introduced. When smoothing the spectrum via cep-
strum thresholding, some of the energy is lost due to the trun-
cation of ĉk to zero in (12). For broadband signals, very few
of the cepstral estimates are truncated so only a small bias is
introduced, whereas for narrowband signals, many more co-
efficients are set to zero, see [4], thus causing the bias seen
in Fig. 6.

4.3 Ocean wave data example
A real-life data set has been used as a third example. The
data is a time series recorded in the Pacific Ocean by a wave-
follower. Every 1/4 second the sea level is measured as the
wave-follower moves up and down following the water sur-
face. The data consists of N = 1024 data points that were
low-pass filtered using an antialiasing filter with a cutoff fre-
quency of approximately 1 Hz. The data was originally col-
lected to investigate whether the rate at which the spectrum
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Figure 7: The log-periodogram of the ocean wave data (N =
1024) together with the smoothed spectrum obtained via CV-

SThresh.

decreases in the interval 0.2 to 1.0 Hz was consistent with a
physical model. The behaviour for frequencies above 1 Hz
was of little interest since it was mainly determined by in-
strumentation and preprocessing. For a detailed explanation
on this ocean wave data see [2]. Applying CV-SThresh to
the ocean wave data, we obtain the smoothed spectrum that
can be seen in Fig. 7 together with the periodogram estimate
of the spectrum. We conclude that using the smoothed spec-
trum makes the computation of the slope in the range of 0.2
to 1.0 Hz very easy compared to using the highly erratic pe-
riodogram estimate. In Fig. 8 we plot the curve of CVMSE
versus μ , used to find μopt .

5. CONCLUDING REMARKS

In this paper we have proposed CV-SThresh, a new
data-driven method for threshold selection in smoothed
non-parametric spectral estimation. The proposed cross-
validation based method has been applied to a broadband,
a narrowband and a real-life broadband example. The re-
sults obtained conform with the results in [4, 6], derived us-
ing some apriori knowledge about the true spectrum. While
the method proposed here is complete, there are a few steps
of it that can be explored, namely the criterion used in the
threshold selection and the cross-validation scheme. The cri-
terion used in this paper is a cross-validatory estimate of the
minimum mean square error. There is no particular argu-
ment regarding the choice of this criterion, so the possibility
for using other criteria can be explored. Regarding the cross-
validation method employed, given N periodogram ordinates

(Φ̂P(ωk)) there are many cross validation schemes available:
leave-one-out, leave-two-out, etc. In this paper the focus was
on the leave-one-out scheme, mainly because it gives good
results with few computations.
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Figure 8: The CVMSE for the ocean-wave data.
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