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ABSTRACT

In this paper we discuss turbo equalization for transmission over

doubly selective channels. The maximum a-posteriori (MAP) al-

gorithm is used for detection as well as for channel decoding. The

detection/decoding constituents can exchange soft information in an

iterative manner resulting in the so-called turbo-equalization. The

time-varying multi-path fading channel is modeled using the basis

expansion model (BEM). In this BEM, the time-varying channel is

viewed as a bank of time-invariant FIR filters and the time-variation

is captured by means of time-varying complex exponential basis

functions. Therefore, the time-varying transition tables that char-

acterize the time-varying channel can also follow the BEM. This

allows for a lower complexity MAP detector with comparable com-

plexity to the MAP detector for time-invariant channels.

1. INTRODUCTION

Soft-input soft-output (SISO) processing based decoding and/or de-

tection has gained a lot of attention in the past years due to its su-

perior performance over hard decision decoding and/or equaliza-

tion. Turbo equalization inspired by turbo coding [1], is a form of

SISO joint detection and channel decoding [2]. In this sense the

inter-symbol interference (ISI) channel is considered as a convo-

lutional code serially concatenated with the channel encoder. The

two decoding constituents (the detector and the channel decoder)

can exchange soft information in an iterative manner resulting in

the so-called turbo equalization.

In this paper, the channel equalizer is based on the optimal

symbol-by-symbol maximum a-posteriori (MAP) detector imple-

mented using the BCJR algorithm [3]. To reduce complexity the

MAP detector can be replaced by an ISI canceller (linear or de-

cision feedback equalizer) [4, 5, 6]. In these works, the wireless

channel is assumed to be time-invariant (frequency-selective). For

slowly time-varying channels, similar algorithms can be devised

and proved to provide acceptable performance. However, these al-

gorithms have difficulty to track and equalize rapidly time-varying

channels.

In this paper, we consider transmission over doubly selective

channels, where the channel is selective in time as well as in fre-

quency. The channel frequency selectivity arises from the inter-

symbol interference as a result of the multi-path propagation, while

the channel time selectivity arises from the Doppler shift and/or the

carrier frequency offset between the transmitter and receiver. The

underlying time-varying multi-path channel has a rather complex

structure [7] which may indeed be prohibitive for developing chan-

nel equalization techniques. Therefore, the time-varying channel

is modeled here using the basis expansion model (BEM), where

the complex exponential version of the BEM is considered. Us-

ing the BEM allows for an efficient low complexity mechanism to

update the time-varying branch metrics of the time-varying chan-

nel in the MAP algorithm. Hence a lower complexity MAP-based

equalization algorithm can be devised with comparable complexity

to the MAP detector for time-invariant channels. In this sense, the

turbo-equalization principle can be applied for single carrier (SC)

transmission as well as multi-carrier (MC) transmission over dou-

bly selective channels. The MC system considered in this paper

is implemented using orthogonal frequency-division multiplexing

(OFDM).

This paper is organized as follows. In Section 2, the system

model is introduced. The turbo equalizer for SC and OFDM trans-

mission over doubly selective channels is introduced in Section 3.

Our findings are confirmed by numerical results introduced in Sec-

tion 4. Finally, conclusions are drawn in Section 5.

Notation: We use lower (upper) case bold face letters to de-

note time-domain (frequency-domain) vectors. Matrices are also

denoted using bold face upper letters which should be differentiated

from the frequency-domain vectors from the context. Superscript H

is used to denote the Hermitian operation. We denote the N×N

identity matrix as IN , the M×N all zeros matrix by 0M×N , and ek
as the length N unity vector with 1 at position k. Finally, diag{x}
denotes the diagonal matrix with the vector x on the diagonal.

2. SYSTEMMODEL

We consider transmission over a doubly selective channel, with one

transmit antenna and one receive antenna. The input bits ak ∈ {0,1}
for k = 0, . . . ,K− 1 are first encoded using a recursive systematic

convolutional (RSC) encoder with code rate r. The RSC encoder

produces the coded bits bk ∈ {0,1} for k = 0, . . . ,(K/r)− 1. The

coded bits are interleaved to protect them from burst errors first, and

also to help in developing a turbo equalization scheme. The inter-

leaved coded bits are denoted by ck. The interleaved coded bits ck
are grouped in blocks of m-bits, and each block is then mapped to a

symbol x[n] drawn from a finite alphabet. The finite set is denoted as

X with cardinality |X | = M = 2m. In this paper we assume block

transmission, therefore the data symbols x[n] are grouped in blocks

of sizeN (given the above information N = K
mr

), and transmitted at a

rate of 1/T symbols per second over the time-varying channel. The

data sequence can be thought of as time-domain QAM symbols for

SC transmission, or a time-domain equivalent of QAM frequency-

domain symbols for MC transmission. The discrete time base-band

equivalent description of the received sequence at time index n is

given by:

y[n] =
L

∑
l=0

g[n; l]x[n− l]+v[n], (1)

where g[n; l] is the discrete time equivalent base-band representa-

tion of the time-varying frequency-selective channel taking into ac-

count the physical multi-path channel and the transmitter and re-

ceiver pulse shaping filters. The channel order L = ⌊τmax/T⌋+ 1

with τmax is the channel maximum delay spread. Finally, v[n] is the
discrete time additive white noise (AWN).

We use the basis expansion model (BEM) [8, 9] to approxi-

mate the doubly selective channel g[n; l], where the doubly selective
channel is modeled as a time-varying FIR filter over a window of

size N. For n ∈ {0, . . . ,N− 1}, each tap of the time-varying FIR
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Figure 1: Input-output relationship using the BEM to approximate

the doubly selective channel

filter is expressed as a superposition of complex exponential basis

functions with frequencies on a discrete Fourier transform (DFT)

grid, i.e.

h[n; l] =
Q/2

∑
q=−Q/2

e j2πqn/Phq,l , (2)

where Q is the number of time-varying basis functions satisfy-

ing Q/(2PT ) ≥ fmax, with fmax is the channel maximum Doppler

spread, and P ≥ N is the BEM resolution. hq,l is the coefficient of

the qth basis function of the lth tap, which is kept invariant over a

period of a transmission of a block of N symbols, but may change

from block to block.

Substituting (2) in (1), we arrive at the following input-output

relationship

y[n] =
Q/2

∑
q=−Q/2

L

∑
l=0

e j2πqn/Phq,lx[n− l]+v[n]. (3)

The input-output relationship (3) is depicted in Figure 1. Defining

y = [y[0], . . . ,y[N−1]]T , the received vector y can be written as

y =
Q/2

∑
q=−Q/2

L

∑
l=0

hq,lDqZlx+v, (4)

where Dq is a diagonal matrix with the qth basis function compo-

nents on its diagonal Dq = diag{[1,e j2πq/P, . . . ,e j2πq(N−1)/P]T},
and the N × (N + L) Toeplitz matrix Zl is defined as Zl =
[0N×(L−l),IN ,0N×l ]. The transmitted symbols vector x is defined

as x = [x[−L], . . . ,x[N− 1]]T , and finally the additive noise vector

v is similarly defined as y.

3. TURBO EQUALIZATION

In turbo equalization, the ISI channel can be viewed as a con-

volutional encoder serially concatenated to the channel convolu-

tional encoder. The detector and channel decoder, if implemented

by means of SISO algorithms, can then exchange soft information

in an iterative manner resulting in the so-called turbo equalization

scheme. The soft information produced by the detector is fed to the

channel decoder as a-priori information and vice versa. The opti-

mal symbol-by-symbol MAP algorithm is considered for detection

as well as for channel decoding. An efficient implementation of the

MAP algorithm based on the trellis diagram is the BCJR algorithm

(sometimes referred to as the BCJR-MAP algorithm [3]). The MAP

detector uses the channel model parameters and a-priori informa-

tion provided by the channel decoder to maximize the a-posteriori

probability (APP) Pr(x[n] = x|y) where x ∈ X .

It is more convenient to work with log-likelihood-ratios (LLRs)

rather than probabilities. The symbol LLR at time index n is defined
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Figure 2: System model

as

Ln(x) = log
Pr(x[n] = x|y)

Pr(x[n] = x0|y)
, (5)

where x0 is some reference symbol. Therefore, the APP Pr(x[n] =
x|y) is obtained from the symbol LLR as:

Pr(x[n] = x|y) = K0exp[Ln(x)], (6)

where K0 = Pr(x[n] = x0|y). Using Bayes’ theorem, the LLR Ln(x)
can be written as

Ln(x) = log
Pr(y|x[n] = x)

Pr(y|x[n] = x0)
+ log

Pr(x[n] = x)

Pr(x[n] = x0)
, (7)

the first term in (7) is the extrinsic information, and the second term

is the a-priori information, either initially known to the channel

equalizer or provided by the channel decoder in later iterations.

For binary data c ∈ {0,1}, the LLR can be obtained as

L(c) = log
Pr(c = 1|y)

Pr(c = 0|y)
. (8)

Here, the coded bits LLRs can be obtained from the data symbols

LLRs as follows. The transmitted data symbols (QAM symbols)

x[n] are obtained by mapping m coded bits into a symbol x ∈ X .

Let the symbol x[n] transmitted at time index n be mapped from

the sequence of m coded bits {c1[n], . . . ,cm[n]}. Hence, the LLR of

the ith coded bit of the transmitted symbol at time index n can be

computed from the symbols LLRs as

Ln(ci) = log
∑x∈X 1

i
exp[Ln(x)]

∑x∈X 0
i
exp[Ln(x)]

, (9)

where X 1
i (X 0

i ) is a subset of X containing symbols x mapped

from the m-bits sequence {c1[n], . . . ,cm[n]} with ci[n] = 1 (ci[n] =
0). Formula (9) is valid provided that the coded bits ci[n] are in-

dependent identically distributed (i.i.d) random variables, which is

a valid assumption thanks to the interleaver used at the transmitter.

The APPs that are necessary to compute the LLRs are obtained by

applying the MAP algorithm for detection as well as for channel de-

coding. In the following we explain the MAP equalizer for the case

of SC transmission as well as for MC transmission implemented

using orthogonal frequency-division multiplexing (OFDM).

3.1 SC Transmission

For SC transmission the time-domain transmitted symbols x[n] are
drawn from a finite alphabet X . Therefore, the MAP equalizer can

be obtained by performing the BCJR algorithm where the forward



coefficient αn(s) and backward coefficient βn(s) at time index (re-

cursion) n are obtained as:

αn(s) = ∑
∀s′∈S

αn−1(s
′)γn−1(s

′,s) (10)

and

βn(s) = ∑
∀s′∈S

βn+1(s
′)γn(s,s′), (11)

where S is the set of all possible states in the trellis describing

the channel transitions. The initial conditions for the forward re-

cursion coefficients are α−1(s0) = 1 and α−1(s 6= s0) = 0 assuming

the initial state is known to be s0. The initial conditions for the

backward recursion coefficients are βN(s) = 1/|S | ∀s∈S assum-

ing no trellis termination. If the trellis is terminated to some final

state s j , then the initial conditions for the backward recursion coeffi-

cients are βN(s j) = 1, and βN(s 6= s j) = 0 . The term γn(sn,sn+1) is
the transition probability Pr(sn,y[n]|sn+1). Using Bayes’ theorem,

γn(sn,sn+1) can be written as

γn(sn,sn+1) = Pr(sn+1|sn)Pr(y[n]|sn,sn+1). (12)

To compute the transition probability we have to compute the

metric for every branch in the trellis describing the time-varying

channel. To do so, we define z(i, j)[n] as the noiseless channel output
symbol corresponding to the transition from state i to state j at time

index (recursion) n. Also define the sequence X (i, j) as the length

L+ 1 sequence of symbols that characterizes the transition from

state i to state j for i, j = 0, . . . ,ML−1, X (i, j) = {x(i, j)0 , . . . ,x
(i, j)
L }.

The noiseless channel output z(i, j)[n] can be written as

z(i, j)[n] =
L

∑
l=0

g[n; l]x
(i, j)
L−l

. (13)

Using the Euclidean distance, the channel branch metric for the

transition from state i to state j at time index n is given by

r(i, j)[n] =
∣

∣y[n]− z(i, j)[n]
∣

∣

2
. (14)

For time-invariant channels, the outputs z(i, j)[n] are also time-

invariant (independent of n), which means that to run the BCJR

algorithm, one state diagram (transition table) has to be constructed

and used for the equalization process. For time-varying channels,

however, the output symbols z(i, j)[n] are also time-varying as they

depend on the channel state information (CSI) at every time instant

n. Therefore, to run the BCJR algorithm, the transition table has to

be recomputed for each recursion. A more efficient procedure can

be obtained by exploiting the BEM as will be clear next.

Using the BEM to approximate the doubly selective channel,

we can write the noiseless channel output z(i, j)[n] in (13) as

z(i, j)[n] =
Q/2

∑
−Q/2

(

L

∑
l=0

hq,lx
(i, j)
L−l

)

e j2πqn/P

=
Q/2

∑
q=−Q/2

z
(i, j)
q e j2πqn/P. (15)

Therefore, the branch metric for the transition from state i to state j

at time index n is given by

r(i, j)[n] =
∣

∣

∣
y[n]−

Q/2

∑
q=−Q/2

z
(i, j)
q e j2πqn/P

∣

∣

∣

2
. (16)

Using the BEM as shown in (15), to run the BCJR algorithm,

we have to construct Q+ 1 time-invariant transition tables. Each

transition table corresponds to a branch of the BEM channel, and

contains the elements z
(i, j)
q (i, j = 0, . . . ,ML− 1) for one particular

q. The output of the transition from state i to state j at the qth branch

z
(i, j)
q is given by

z
(i, j)
q =

L

∑
l=0

hq,lx
(i, j)
L−l

. (17)

Assuming additive white Gaussian noise (AWGN) with zero-

mean and variance σ2
n , the transition probability from state i to state

j, γn(si,s j) is obtained as

γn(si,s j) = (18)
{

Pr(x[n] = x(i, j))
exp[−r(i, j)/(2σ2

n )]√
2πσ2

n

si → s j

0 otherwise
.

The LLR of the coded bits provided by the equalizer are then com-

puted as

L
(E)
n (ci) = log

∑x∈X 1
i

αn(si)γn(si,s j)βn+1(s j)

∑x∈X 0
i

αn(si)γn(si,s j)βn+1(s j)
. (19)

The SISO decoder follows the same principle, replacing the

channel outputs by the convolutional encoder outputs. The a-priori

information fed to the SISO decoder consists of the LLRs on coded

bits provided by the SISO equalizer minus the a-priori information

in the form of extrinsic information, i.e.

L
(E)
e (ci[n]) = L

(E)
n (ci)−L

(D)
e (ci[n]), (20)

where L
(E)
n (ci) is the LLR value on coded bits provided by the SISO

equalizer, and L
(D)
e (ci[n]) is the extrinsic information provided by

the SISO decoder as a-priori information of the ith coded bit of

the nth channel symbol. The SISO decoder produces soft infor-

mation on uncoded bits as well as on coded bits. The LLRs on

coded bits of the SISO decoder minus the input LLRs provides ex-

trinsic information (similar to (20)) as a-priori information which

is then fed back to the SISO equalizer as a-priori information. The

SISO equalizer uses this a-priori information for another round of

SISO equalization. The exchange of extrinsic information between

the SISO equalizer and the SISO decoder is repeated in an iterative

manner resulting in the so-called turbo equalization scheme. This

iterative process results in a reduced bit-error-rate (BER). The turbo

equalizer is depicted in Figure 2. For OFDM transmission the same

principle may apply as follows.

3.2 OFDM Transmission

For OFDM transmission, the information-bearing symbols are

parsed into blocks of N frequency-domain QAM symbols. Each

block is then transformed to the time-domain by the inverse discrete

Fourier transform (IDFT). A cyclic prefix (CP) of length ν ≥ L is

added to the head of each block. The time-domain blocks are then

serially transmitted over the time-varying channel. Assuming Sk is

the transmitted symbol on the kth sub-carrier of the OFDM block,

x[n] can be written as

x[n] =
1√
N

N−1

∑
k=0

Ske
j2π(n−ν)k/N .

Note that this description includes the transmission of a CP of length

ν . The received sequence after removing the CP, can be written as

y =
Q/2

∑
q=−Q/2

L

∑
l=0

hq,lDqZ̄lF
HS+v, (21)



where F is the N ×N unitary DFT matrix, Z̄l is an N ×N cir-

cular matrix with el as its first column, and S is the frequency-

domain transmitted vector S = [S0, . . . ,SN−1]
T . The frequency-

domain symbols Sk here are drawn from the finite input symbols

alphabet1 X , i.e. Sk ∈ X . Define Y = [Y0, . . . ,YN−1]
T as the re-

ceived vector in the frequency-domain, then Y can be written as

Y =
Q/2

∑
q=−Q/2

L

∑
l=0

hq,lFDqZ̄lF
HS+V. (22)

For P = N, i.e. when the BEM basis functions are taken on a DFT

grid of size N, we can use the properties Dq = FHZ̄qF and Z̄l =

FHD−lF. Hence, (22) can be written as

Y =
Q/2

∑
q=−Q/2

L

∑
l=0

hq,lZ̄qD−lS+V. (23)

Using the property Z̄qD−l = e j2πql/ND−lZ̄q, we obtain

Y =
Q/2

∑
q=−Q/2

L

∑
l=0

h̃q,lD−lZ̄qS+V, (24)

where h̃q,l = e j2πql/Nhq,l . Note the similarity between (24) and (4).

From (24), it is observed that when using a BEM resolution P = N,

OFDM transmission corresponds to SC transmission over a dou-

bly selective channel, where the doubly selective channel is now of

order Q (instead of L for SC transmission), and the time-variation

is captured by means of L+ 1 (instead of Q+ 1 for SC transmis-

sion) time-varying complex exponential basis functions, and the

channel BEM coefficients are characterized by h̃q,l . Hence, we

can depict a figure similar to Figure 1, but with input Sk, and out-

put Yk to describe the input-output relationship in (24). Therefore,

the SISO equalizer for OFDM transmission is obtained in a sim-

ilar fashion to the one obtained for SC transmission. The branch

metrics of the trellis are obtained as follows. Define the sequence

S (i, j) as the length Q + 1 sequence of symbols that character-

izes the transition from state i to state j, for i, j = 0, . . . ,MQ − 1,

S (i, j) = {S(i, j)
0 , . . . ,S

(i, j)
Q

}. The noiseless channel output symbol

Z(i, j)[k] of the transition from state i to state j at recursion k (recur-

sion refers here to the sub-carrier index) can be written as

Z(i, j)[k] =
L

∑
l=0

Z
(i, j)
l

e− j2π lk/N , (25)

where Z
(i, j)
l

is given by

Z
(i, j)
l

=
Q/2

∑
q=−Q/2

h̃q,lS
(i, j)
Q/2−q

. (26)

Using the Euclidean distance, the branch metric for the transition

from state i to state j at recursion k is given by

R(i, j)[k] =
∣

∣Yk−Z(i, j)[k]
∣

∣

2
. (27)

The turbo equalization is then performed in the same manner as in

the case of SC transmission, where the BCJR algorithm is used for

the SISO equalizer as well as for the SISO decoder. The BCJR al-

gorithm is implemented now in the frequency domain. The LLRs

1Note that we choose to define the frequency-domain input alphabet the

same as the time-domain input alphabet for SC transmission X .

on the transmitted frequency-domain symbol on sub-carrier k is ob-

tained as

Lk(S) = log
Pr(Sk = S|Y)

Pr(Sk = Sre f |Y)
, (28)

where Sre f is some reference symbol Sre f ∈ X . The transition

probability γk(sk,sk+1) = Pr(Sk+1|Sk)Pr(Yk,Sk,Sk+1) is computed

as in (12) replacing y[n] by Yk, and r(i, j)[n] by R(i, j)[k].
For a BEM resolution P>N, the ICI is unlimited and covers the

whole OFDM block, which prevents the development of a practical

SISO equalizer using the trellis based BCJR algorithm. However,

the main part of the ICI comes from the neighboring Q sub-carriers,

and so the above model and analysis may be used as a good approx-

imation.

3.3 Complexity

Running the BCJR algorithm in the time-domain (SC transmis-

sion) and using perfect channel state information (CSI) requires

N(L+1)ML multiply-add (MA) operations, in addition toML mem-

ory locations to store the transition tables (which are to be recom-

puted for each time instant (or recursion)). Running the BCJR algo-

rithm in the time-domain and using the BEM requires (L+1)(Q+
1)ML +N(Q+ 1) MA operations, in addition to (Q+ 1)ML mem-

ory locations to store the Q+ 1 transition tables that characterize

the state diagrams. Note that these figures are updated/computed

for every block of N samples.

Running the BCJR algorithm in the frequency-domain (OFDM)

and using the BEM requires (L+1)(Q+1)MQ +N(L+1) MA op-

erations, in addition to (L+ 1)MQ memory locations to store the

L+1 transition tables that characterize the state diagrams.

4. NUMERICAL RESULTS

In this section we present some simulation results for the proposed

equalization technique for SC as well as for OFDM transmission

over doubly selective channels. In the simulations below, the input

bits are encoded using a rate r = 1/2 RSC code (23,35)8. The en-
coded bits are interleaved using a random interleaver of size K/r (K
is the number of uncoded bits in one block). The interleaved coded

bits are then mapped to Quadrature Phase Shift Keying (QPSK)

symbols X = {∓1∓ j}/
√
2, and then transmitted over the doubly

selective channel. In all simulations, the channel taps are simulated

as i.i.d random variables, correlated in time according to Jakes’

model with correlation function rh[n] = J0(2πn fmaxT ), where J0 is
the zeroth-order Bessel function of the first kind, fmaxT = 0.001 is

the maximum normalized Doppler spread. The time-varying chan-

nels are normalized to have unity power. As the channel is time-

varying, the channel taps over a block of N symbols are normalized

as follows

g(t;τ) =
gch(t;τ)

√

1
NT

LT
∫

τ=0

∫

NT

|gch(t;τ)|2 dtdτ

.

The Jakes’ Channel model was approximated by the BEM using

least squares (LS) fitting. The BEM channel coefficients are as-

sumed to be perfectly known at the receiver and used to equalize

the underlying Jakes’ channel model (taking into account the mod-

eling error) and/or the exact BEM channel model as explained next.

Turbo equalization with channel estimation is out of the scope of

this paper and a topic of further investigation.

• SC Transmission: For SC transmission the doubly selective

channel is assumed to be of order L= 3. A window of size N = 800

is considered. The BEM resolution is chosen to be P = N and

P = 2N. The number of basis functions in the BEM is Q = 2
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Figure 3: Turbo equalization of SC transmission over doubly selec-

tive channels

for P = N, and Q = 4 for P = 2N. The approximated BEM chan-

nel coefficients are used to equalize the underlying Jakes’ channel

model. The simulation results corresponding to this channel setup

are shown in Figure 3. In addition to this setup, coded transmission

over an additive white Gaussian (AWGN) channel is considered

in the simulations. The performance of coded transmission over

AWGN channel serves as a theoretical bound for the performance

of the proposed turbo equalizers. In the simulations 10 iterations

were performed. However, the difference between the third and the

tenth iteration was very marginal, and most of the performance gain

was obtained in iteration #2. As shown in Figure 3, the SNR gain

for iteration #2 over iteration #1 is 2dB for BER = 10−3 and P = N

and 1.8dB for BER = 10−4 and P = 2N. If the BEM resolution is

equal to the block size, i.e. P = N the BER suffers from an error

floor for high SNR values. This is due to the modeling error be-

tween the underlying real channel and the BEM. For P = 2N, the

BER floor was not reached for the BER values shown in the figure.

However, for the latter case, the SNR loss is 0.8dB at BER = 10−4

and obtained in iteration #10 compared to the theoretical bound for

coded transmission over AWGN channels.

• OFDM Transmission: For OFDM transmission the doubly

selective channel is assumed to be of order L = 6. The window

size (the number of sub-carriers in the OFDM system) is N = 512.

The channel follows Jakes’ model, and is modeled using the BEM

with BEM resolution equal to the block size, i.e. P = N. This al-

lows to limit the inter-carrier interference support to Q = 2 adja-

cent sub-carriers, and hence leads to a finite trellis for the MAP

equalizer. The BEM channel coefficients are used to equalize the

true Jakes’ channel (with channel modeling error) as well as the

approximated BEM channel (no channel modeling error). For the

two channel setups, the performance of the proposed turbo equal-

izer is shown in Figure 4. In the simulations, 10 iterations were

performed. However, the performance difference between iteration

#3 and iteration#10 is marginal. As shown in the figure, the SNR

loss is 3.2dB for the proposed turbo equalizer compared to the theo-

retical bound at BER= 10−4 and when the channel follows exactly

the BEM, and around 4.2dB when the channel follows Jakes’ model

at iteration #10 and BER = 10−3. The BER curve for the case of

Jakes’ channel model tend to have an error floor (not shown in the

figure) at BER = 10−4. This is due to the modeling error between

the Jakes’ channel model and the BEM channel model.
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Figure 4: Turbo equalization of OFDM transmission over doubly

selective channels

5. CONCLUSIONS

In this paper we have discussed turbo-equalization for transmis-

sion over doubly selective channels. Single-carrier and multi-carrier

transmission techniques have been considered. The doubly selec-

tive channel is modeled using the BEM. Using the BEM, it has been

demonstrated that a simple time-invariant MAP detector can be uti-

lized instead of the time-varying high complex MAP detector. The

resulted MAP detector has a comparable complexity to the MAP

detector for time-invariant channels.
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[5] M. Tüchler, R. Koetter, and A. Singer, “Turbo Equalization:

Principles and New Results,” IEEE Trans. Commun., vol. 50,

pp. 754–767, May 2002.

[6] R. Koetter, A. Singer, and M. Tüchler, “Turbo Equalization,”
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