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ABSTRACT

We propose and evaluate estimation methods for all sound
source directions on the horizontal plane based on a Gaus-
sian mixture model (GMM) using binaural signals. An esti-
mation method based on GMM can estimate a sound source
direction on which GMM has already been trained; how-
ever, it cannot estimate without a model that corresponds
to a sound source direction. Three methods with interpo-
lation techniques are investigated. Two generate GMMs for
all directions by interpolating an acoustic transfer function
or statistical values of GMM, and the other calculates the
posterior probability for all directions with a limited number
of GMMs. In our experiments, we investigated six interval
conditions. From the results, the interpolation methods of an
acoustic transfer function and the statistical values of GMM
achieve better performance. Although there were 12 trained
GMMs for the 30° intervals, the interpolation method of the
statistical values of GMM estimated 62.5 % accuracy (45/72)
with 2.8° estimation error. These results indicate that the pro-
posed method can estimate all sound source directions with
a small amount of known information.

1. INTRODUCTION

The detection of sound source direction is a crucial technique
widely used in such fields as speech enhancement, sound
recording, security systems, and so on. Studies based on mi-
crophone arrays are abundant and employ many microphones
to obtain high detection performance. Reducing the num-
ber of microphones would lower costs and facilitate mainte-
nance.

We can perform a sound localization using both ears.
A binaural signal can be represented as a convolution of a
sound source signal and a binaural room impulse response
(BRIR). A BRIR is composed of a head-related transfer func-
tion (HRTF) and a room impulse response that represents
an acoustic environment. We can perceive the sound source
direction with an interaural time difference and an interau-
ral level difference (ILD) that are included in binaural sig-
nals. Previous research examined the probability distribu-
tions of these interaural differences[1], and a sound localiza-
tion model using its distribution has also been proposed[2].
Estimation methods using HRTF were also examined for
robot hearing [3, 4, 5, 6].

The detection of sound source direction is performed
by comparing the acquired memory of the sound localiza-
tion and the information obtained from the current sound
[7]. A method based on a Gaussian mixture model (GMM)
was investigated as one training-based scheme [8]. In that
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study, experiments for estimating sound source direction
were conducted in eight reverberation conditions, and the
results showed that this method could estimate any sound
source direction in a room that has several reverberation
times. Moreover, we conducted experiments for an in-car
environment[9], and the results showed that our evaluated
method is robust to sound source situations and the influence
of noise.

These training-based methods can estimate the trained di-
rection; however, basically, the sound source of the untrained
direction cannot be estimated. GMMs must be prepared for
all directions, which is difficult because measuring the bin-
aural signals for all sound source directions and computer
resources is expensive.

In this paper, we propose a novel estimation method for
all sound source directions using a binaural signal based on
GMM. Three estimation methods for all sound source direc-
tions were investigated using interpolation techniques. Our
method applied interpolation methods to a BRIR, the statis-
tical value of GMM, and posterior probability. Estimation
performances were evaluated by correct rate and estimation
error.

2. SOUND LOCALIZATION BASED ON GMM

2.1 Feature parameter

In our method, ILD is represented by a cepstrum-like param-
eter called the ILD cepstrum that represents its rough tenden-
cies. It also divides components based on HRTFs and room
environments. The ILD cepstrum was obtained with the fol-
lowing procedure:

1. The signals that arrive at the left and right ears are de-
noted as s, [f] and sg[t], respectively. Both are truncated
with a Hamming window whose frame length and frame
shift is [ = 128 and /; = 32, respectively, based on the
results of our preliminary experiment.

2. ILD is calculated using Eq. (1). However, when one of
the signals has a lower absolute value of amplitude than
the threshold, ILD calculation is not conducted:

_ISL(f)l
ISLR (k)| = AL (D

where Sp(fi) is the magnitude response of the left ear’s
signal, Sgr(f;) is the right ear, and f; denotes the fre-
quency. We used a threshold of 0.005 based on the results
of our preliminary experiment.
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3. The Fourier transform is applied to the logarithm of ILD,
and feature parameter c[n] is obtained using Eq. (2). In
our study, the ILD cepstrum is denoted by c[n]. Thus, the
ILD envelope is obtained by lower-order ILD cepstrums:

1 N—1 )
cln] =~ 2 101og;, \SLR(fk)|€Jznl"/N
N 1=0
(n:()vlv"'vN)‘ (2)

The condition of N = 15 was also investigated. If a BRIR
consists of the convolution of the room impulse response
and HRTE, the ILD cepstrum can be represented as the
sum of components resulting from the room impulse re-
sponse and HRTF.

2.2 GMM training and sound source direction estima-
tion with GMM

GMM, a statistical model that represents the linear combina-
tion of Gaussian distributions, is often used for speech recog-
nition, speaker identification, and so on. In our method, a
Gaussian model for every direction was prepared and trained
using binaural signals. The training procedure is described
as follows:

1. The distribution of the ILD cepstrum c[n] given by Eq.
(2) is approximated with Gaussian distribution, which
is considered the statistical model for estimating sound
source direction. Statistical models for every sound
source direction can be represented by:

2’9 = {We,mvue7m7297m|m: 1727"'7M} .

2. The expectation maximization (EM) algorithm gives the
weight for each distribution w,,, mean (,,, and covari-
ance matrix X,,. Then estimation model Ag is trained
for every sound source direction. Our method uses the
diagonal covariance matrix. In our experiments, a single
mixture model (M = 1) was used because distributions of
the ILD cepstrum were unimodal.

Below is the procedure for estimating sound source di-
rection with the Gaussian model:

1. The ILD cepstrum c[n] of the input signals is calculated
with the same procedure as in Section 2.1.

2. The posterior probability between the ILD cepstrums of
the input signals and every trained Gaussian model is cal-
culated. The direction of the model that gives maximum
posterior probability is considered the sound source di-
rection.

Figure 1 shows a posterior probability map when GMMs
for all directions were prepared. The input signal (test signal)
is identical as a training signal for every azimuth. In this fig-
ure, the horizontal axis is a target azimuth that corresponds to
an input signal, and the vertical is an evaluated azimuth that
corresponds to the trained GMMs. Colors represent posterior
probability. Posterior probabilities were normalized at every
target azimuth because the calculations of posterior proba-
bility are independently performed every target azimuth. If
sound localization is performed correctly, as shown in Fig. 1,
a dark red appears on a diagonal. In addition, note that higher
probabilities appear at directions that cause front-back con-
fusion.
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Figure 1: Posterior probability map when training and test
signals are identical.

3. METHOD FOR UNTRAINED SOUND SOURCE
DIRECTION ESTIMATION

Three methods to estimate every sound source direction were
investigated using interpolation techniques. The first and sec-
ond methods prepare GMMs for all directions with an inter-
polation method. In our study, since binaural signals were
obtained by convolving a BRIR and an evaluation signal, an
interpolation method was applied to the BRIRs. If interpola-
tion is performed precisely, good estimation can be achieved.
However, neither method decreases the number of calcula-
tions of the posterior probability. The third method, which
interpolates posterior probability, can decrease the number
of calculations of the posterior probability.

e Method 1:
BRIR was interpolated by a simple linear interpolation
method[10]. Interpolated BRIR /] is given by

hlt] = rhe, [1] + (1 = r)hg, [t — 7], 0<r<1, (3)

where hg, [t] and hg,[t] are measured BRIRs, r is a di-
viding ratio, and 7 is decided by the cross correlation
coefficient between hg, [t] and hg,[t]. To obtain higher
interpolation performance, first, the BRIRs were applied
10 times upsampling [11]. After interpolation, a down-
sample method was applied. Except for the measured
directions, the GMM of every direction was trained with
the interpolated BRIR.

e Method 2:
A GMM has means, variances, and weight coefficients.
GMMs were trained using the measured BRIR to decide
statistical values. A statistical vector was defined with
calculated values, for example:

H= {“00""’“9""7“3600}~

The statistical values of an arbitrary direction were ob-
tained by interpolating the vectors with the cubic spline
method.

e Method 3:
GMMs were trained using the measured BRIR and pos-
terior probabilities Py between the evaluated signals and
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then calculated. The posterior probability vector was de-
fined as follows for interpolation:

P:{Poov"'aPGa"'7P36OO}~

A posterior probability of a desired direction was ob-
tained by interpolating P with the cubic spline method.

4. EXPERIMENTS
4.1 BRIR measurement

BRIRs were measured with a head-and-torso simulator
(HATS, B&K 4128) in an echoic measurement room with
a swept sine signal [12] at durations of 1.365 s transduced by
a loudspeaker (BOSE Acoustimass). The HATS was posi-
tioned on a turntable, and the loudspeaker was placed on an
arched traverse. Both the turntable and the arched traverse
could be moved at intervals of 1° with 0.3° accuracy. The
distance between the loudspeaker and the center of the bitra-
gion was 1.2 m. BRIRs were measured for 72 azimuths on
the horizontal plane at a sampling frequency of 48 kHz. The
reverberation time of the measurement room was 151 ms,
and the background noise level of the measurement room was
19.1 dB(A). The azimuth angles of the sound source (loud-
speaker) corresponded to the following: the front was 0°, the
left was 90°, the right was 270°, and the angle directly behind
the HAT'S was 180°.

4.2 Experimental conditions

In the experiment, a binaural signal was obtained by convo-
lution of the BRIR, and a kind of bubble noise was generated
by superposing many speech signals. We used the bubble
noise with 24 superpositions, whose signal durations were 2
s. Signal durations for training and evaluation were identical.

The evaluated intervals were 10, 15, 30, 45, and 60°. For
example, in the case of 10° intervals, GMMs were trained for
0°, 10°, ---, 360° (same as 0°), and 72 azimuths (0°, 5°, ---,
355°) were estimated.

Method 1, the BRIRs must be interpolated for an arbi-
trary azimuth from the BRIRs that were measured at the eval-
uated intervals. Interpolation performances were evaluated
by the signal-to-deviation ratio (SDR) and the spectral dis-
tortion (SD):

2, h[n]
SDR = 10log;y —"=
Zl{h[n} — h[n]}?

[dB], (4)

where h[n] is the measured BRIR and /[n] is the interpolated
BRIR. N is the duration of the BRIR, and N = 65,536 was
used. The interpolated BRIR is more similar to the measured
BRIR when a large SDR is obtained.

K

1 H(fk)|>2
SD — 20l0g;( x dB], 5
K/Zi ( TIA] 4B ®

where |H(f;)| is the frequency magnitude response of the
measured HRTF, |H(f;)| is that of the interpolated HRTF,
and f} is the frequency. K is the number of frequency bins,
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Figure 2: Average signal-to-deviation ratio of interpolated
BRIRs. Solid and dashed lines represent performance of left-
and right-ear BRIRs, respectively.
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Figure 3: Average spectral distortion of interpolated BRIRs.
Solid and dashed lines represent performance of left- and
right-ear BRIRs, respectively.

and K = 513 was used. The interpolated HRTF is more simi-
lar to the measured HRTF when a small SD score is obtained.

Figures 2 and 3 show the performances. Since the in-
terval was large, the interpolation performances were worse.
The interpolation performances of BRIR were worse than the
HRTF interpolation [10] because BRIR’s duration was long
and it includes a component concerned with the reverbera-
tion.

4.3 Results

Figures 4 and 5 show the correct rate and the estimation er-
ror, respectively. The correct answer was that the target and
the estimated azimuth were identical. Estimation error was
calculated by

1 & .
e=7—22\9,-—e,-| [deg], (©6)

i=1

where 6; is the i-th target azimuth and éi is the i-th estimated
azimuth. Trained directions were included in the calculation
of the correct rate and error due to reflect the possibility of
mistakes at the trained directions.

From the results, since the interval was large, the per-
formances were worse. The difference between Methods 1
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Figure 5: Estimation error.

and 2 is small, and both methods could estimate greater than
60 % accuracy within 3° estimation error under 30° intervals.
Method 1, the estimation performances have a strong corre-
lation with the SDR instead of the SD score. The correlation
coefficient between the results of Method 1 and the SDR was
0.96.

Therefore, the interpolation method must be improved to
obtain good estimation performances.

Figures 6 to 8 show the posterior probability maps and
estimated directions for 30° intervals, and Figures 9 to 11
are for the 60° intervals. In these figures, the horizontal
axis is a target azimuth that corresponds to an input signal,
and the vertical is an evaluated azimuth that corresponds to
the trained GMMs. Colors represent the posterior probabil-
ity, and dots are the estimated direction. Except for Fig-
ure 11, these figures all show that the posterior probabil-
ity map resembles the original map (Fig. 1). Therefore,
the sound source direction can be estimated using a small
amount of known information. However, since estimation
performances were worse at directions around both ears, im-
provement is still necessary. Method 3 for large intervals,
variable intervals must be examined instead of equivalent in-
tervals.

5. CONCLUSION

Three methods based on GMM for estimating all sound
source directions on the horizontal plane were investigated.
The results showed that good performances were obtained

by preparing the GMM for all directions. Both methods es-
timated with greater than 60 % accuracy within 3° estima-
tion error under intervals of 30°. Even though the method
of interpolating the posterior probability did not obtain good
performance, it is still considered useful because the poste-
rior probability maps of the three methods are similar and the
number of calculations was decreased significantly.

Future work includes conducting experiments under sev-
eral reverberation conditions, using an interaural time differ-
ence, and applying it to robot hearing.
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Figure 6: Posterior probability map for Method 1 for 30°  Figure 9: Posterior probability map for Method 1 for 60°
intervals. Correct rate is 63.9 %, and estimation error is 2.4°. intervals. Correct rate is 22.2 %, and estimation error is 7.7°.
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Figure 7: Posterior probability map for Method 2 for 30°  Figure 10: Posterior probability map for Method 2 for 60°
intervals. Correct rate is 62.5 %, and estimation error is 2.8°. intervals. Correct rate is 22.2 %, and estimation error is 6.8°.
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Figure 8: Posterior probability map for Method 3 for 30°  Figure 11: Posterior probability map for Method 3 for 60° in-
intervals. Correct rate is 38.9 %, and estimation error is 5.2°. tervals. Correct rate is 12.5 %, and estimation error is 16.3°.



