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ABSTRACT
We develop a Gaussian mixture model (GMM) based vec-
tor quantization (VQ) method for coding wideband speech
line spectrum frequency (LSF) parameters at low complexity.
The PDF of LSF source vector is modeled using the Gaussian
mixture (GM) density with higher number of uncorrelated
Gaussian mixtures and an optimum scalar quantizer (SQ) is
designed for each Gaussian mixture. The reduction of quan-
tization complexity is achieved using the relevant subset of
available optimum SQs. For an input vector, the subset of
quantizers is chosen using nearest neighbor criteria. The de-
veloped method is compared with the recent VQ methods
and shown to provide high quality rate-distortion (R/D) per-
formance at lower complexity. In addition, the developed
method also provides the advantages of bitrate scalability and
rate-independent complexity.

1. INTRODUCTION

Low complexity, but high quality vector quantization (VQ)
of line spectrum frequency (LSF) parameters has attracted
much attention in the current literature [6], [7], [9], [11],
[12], [14], [15]. The complexity issues in VQ are more
important to address for the applications where the require-
ment of higher perceptual quality is achieved through the al-
location of higher bitrate; in these applications, such as in
wideband speech coding, the complexity of LSF VQ is very
high and thus, it is important to keep the complexity under
check without sacrificing the rate-distortion (R/D) perfor-
mance. One of the most cited low complexity VQ schemes
is split VQ (SVQ) which was first proposed by Paliwal and
Atal for telephone-band speech LSF coding [2] and then ex-
tended to wideband speech LSF coding [5]. So and Paliwal
have recently proposed switched SVQ (SSVQ) method [14]
[9] which is shown to provide better R/D performance than
SVQ at lower computational complexity, but at the require-
ment of higher memory. We also have proposed two stage
VQ methods [12], [15] which are shown to provide compa-
rable R/D performance of SSVQ, but at the requirement of
much lower complexities (both computational and memory).

In addition to addressing the trade-off between com-
plexity and R/D performance, current VQ schemes also fo-
cus on two important issues: seamless bitrate scalability
and rate-independent complexity. The enormous complex-
ity, required for training the optimum codebooks at differ-
ent bitrates, hinders the conventional VQ framework to al-
low seamless bitrate scalability according to the user require-
ment and channel condition. At most, it may be possible
to store the optimum codebooks for different bitrates, but
at the cost of prohibitive memory requirement. Also, the
computational complexity increases exponentially as more

bits are used in a scalable coder for achieving better qual-
ity according to the user requirement and thus, it is impor-
tant to design a VQ scheme with rate-independent complex-
ity. For telephone-band speech LSF coding, both of the is-
sues (bitrate scalability and rate-independent complexity) are
addressed by Subramaniam and Rao [6] using the Gaussian
mixture model (GMM) based PDF optimized parametric VQ
(GMVQ) method. The technique of GMVQ method is fur-
ther used for matrix quantization of telephone-band speech
[10] and wideband speech [8] LSF parameters by So and
Paliwal. In GMVQ [6], typically 8 or 16 number of Gaussian
mixtures are used for LSF vector source modeling and an op-
timum transform domain scalar quantizer (TrSQ) is designed
for each Gaussian mixture where the mixture specific KLT
is used along-with the optimum bit allocation to transform
domain scalar components. An input LSF vector is quan-
tized using all the TrSQs and then the best performing TrSQ
is selected as the winning quantizer using the computation-
ally intensive spectral distortion (SD) measure based post-
processing (SD measure is the perceptually relevant objec-
tive measure used for evaluating the LSF quantization per-
formance). The post-processing is nothing but a VQ method
that uses SD as the distortion measure to choose the best
quantized vector from the set of quantized vectors produced
by all the TrSQs. It can be noted that the increase in number
of Gaussian mixtures for better modeling of the source PDF
using GMM leads to higher complexity in GMVQ.

In this paper, we show that the GMVQ method of [6] can
be modified to yield high quality quantization performance
even at the requirement of much lower complexity. In the
modified method, we model the PDF of LSF vector using
a GMM with higher number of uncorrelated Gaussian mix-
tures and thus, the quantization method is referred to as UG-
MVQ. The developed UGMVQ method is shown to provide
comparable R/D performance of SSVQ at the requirement of
lower complexity and also retaining the advantages of bitrate
scalability and rate-independent complexity. In this paper,
we choose the SSVQ as the baseline method for compari-
son with UGMVQ because it is shown in a recent compara-
tive study [13] of several wideband LSF coding methods (in-
cluding GMVQ of [6]) that the SSVQ provides transparent
quality wideband LSF quantization performance at a better
trade-off between all the VQ performance measures.

2. GMVQ WITH UNCORRELATED GAUSSIAN
MIXTURES (UGMVQ)

The GMVQ method of [6] is modified to develop the UG-
MVQ method for achieving low complexity. The modifica-
tions are as follows:
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Figure 1: UGMVQ method: GMVQ method where the GM density is modeled using uncorrelated Gaussian components.

(1) Using GMM with higher number of uncorrelated
Gaussian mixtures and thus, using optimum scalar
quantizer (SQ) for each Gaussian mixture instead of
TrSQ.
(2) Incorporating a pre-processing block for choosing
the relevant subset of optimum SQs from the set of
all optimum SQs. For an input vector, the subset of
optimum SQs is chosen adaptively by rank ordering
using the nearest neighbor criteria.
(3) Post-processing using computationally simple
weighted square Euclidean distance (WSED) mea-
sure which is shown in [3] as an approximation to SD
measure. We use the spectral sensitivity coefficients
[3] as the weighting values to compute WSED mea-
sure.

2.1 Source vector PDF modeling
Let, X be the p-dimensional LSF source vector; the PDF of
X is modeled using a GM density of M Gaussian mixtures
as,

fX(x) ≈
M

∑
m=1

αm N(µm,X,Cm,X) (1)

where αm, µm,X and Cm,X are the prior probability, mean
vector and covariance matrix of the mth Gaussian compo-
nent, N(µm,X,Cm,X). The approximate equality, used in
Eqn. 1, is because of modeling a source PDF using the GMM
with finite number of M mixtures. However M is chosen
large so that each mixture density has small covariance and
the covariance matrix is also assumed to be diagonal, i.e.
Cm,X = diag

[{
σ2

m,1,σ2
m,2, . . . ,σ 2

m,p

}]
, 1≤ m≤M; here σ 2

m,i

is the variance of ith scalar component for mth Gaussian mix-
ture. The well-known expectation-maximization (EM) algo-
rithm is used to evaluate the GMM parameters. The use of
large number of Gaussian mixtures allows us to capture the
details of source PDF and thus, better quantization perfor-
mance is guaranteed.

2.2 Quantization algorithm

For each Gaussian mixture, we resort to direct independent
SQ instead of transform domain SQ (TrSQ) because of mod-
eling the source PDF using GMM of uncorrelated Gaus-
sian components. However, the higher complexity due to
increased M in GM density modeling is kept under check
through the use of subset of SQs from the set of all M SQs.
The use of subset of SQs, instead of all M SQs, is experi-
mentally shown to affect the LSF quantization performance
minimally. For each Gaussian mixture specific SQ, optimum
bit allocation is carried out to achieve the best R/D perfor-
mance. An input vector is quantized using L number of rele-
vant optimum SQs instead of the total M number of optimum
SQs and then the winning candidate, among the L quantized
vectors, is selected for transmission by comparing with the
input vector. Even though the GMVQ of [6] is claimed to
be computationally efficient, a large amount of computation
is spent on quantizing the input vector using all the mixture
specific quantizers. Ostensibly, this is due to the requirement
of minimizing the perceptually relevant SD measure which
is not amenable for linear analysis. Also, due to the use of
restricted number of mixture components (typically 8 or 16)
for GM density modeling in GMVQ [6], the mixtures are
highly overlapping in nature and thus, it is imperative to use
all the mixture specific quantizers. Through experimentation
[16], we have recently found that there exists a monotonic
relation between SD measure and square Euclidean distance
(SED) measure. Hence, in the developed UGMVQ method,
we need not use the entire set of M SQs for an input vector,
but instead use a subset of L SQs (where L�M) to achieve
the near optimum quantization performance. For this, we
incorporate a pre-processing block where an input vector is
compared with M mean vectors of all Gaussian mixtures us-
ing SED measure (i.e. using nearest neighbor criteria) and
the subset of L relevant optimum SQs is chosen from the set
of M optimum SQs using rank ordering (sorting). The re-
duced search to L optimum SQs, permits us to choose a much
higher value of M for better source density modeling using
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GM density and also, reducing the intra-mixture covariance
matrix to the near diagonal one; this removes the need for
a de-correlating transform (KLT), as used in GMVQ of [6],
and thus, helps further to reduce the complexity. Fig. 1 shows
the developed UGMVQ method. The algorithmic steps asso-
ciated with UGMVQ method are as follows:

(1) Pre-processing: The input vector is compared with
the M mean vectors of all Gaussian mixtures using
SED measure and the SED distance values are rank
ordered (sorted); according to the rank ordering, the
L number of relevant SQs are chosen from M SQs for
quantization.
(2) Quantization: Quantizing the input vector using
the selected L best SQs.
(3) Post-processing: Reconstructing the L quantized
vectors. Choosing the best quantized vector using
WSED measure (by comparing with the input vector)
and transmitted.

2.3 SQ with optimum bit allocation
For each Gaussian mixture, the low complexity SQ, instead
of several product code VQ methods, is chosen so that the
quantizer retains the advantages of bitrate scalability and
rate-independent complexity. To quantize an input vector
using the mth Gaussian mixture specific optimum SQ, the
input vector is mean removed and the scalar components of
mean removed vector is variance normalized. Let us denote
the mean removed and variance normalized vector for mth
Gaussian mixture as Xm = diag

[{
1

σm,i

}p

i=1

]
[X−µm,X]; the

scalar components of Xm vector are quantized independently
using SQ with optimum bit allocation.

For a b bits/vector quantizer, log2 M bits are used for
transmitting the winning quantizer identity and thus, the rest
(b− log2 M) bits are used for SQ. For the mth Gaussian com-
ponent specific optimum SQ, (b− log2 M) bits are allocated
optimally to the p scalar components as [1],

bm,i =
b− log2 M

p
+

1
2

log2
σ2

m,i
(

∏p
k=1 σ2

m,k

) 1
p
,1≤ i≤ p , (2)

where bm,i is the number of bits allocated to the ith scalar
component for mth Gaussian mixture. The well-known
water-filling algorithm may be applied to find the integer bit
allocation from the above real bit allocation formula for prac-
tical requirement. It may be noted that the optimum bit al-
location for each mixture specific SQ, provides the PDF de-
pendent coding advantage, although the use of SQ results in
a loss of space-filling advantage. But, the use of SQ provides
for lower complexity and easy bitrate scalability. To address
the issue of bitrate scalability, we mention that the optimality
of R/D performance for UGMVQ method can be addressed
easily by evaluating Eqn. 2 at any bitrate (i.e. at any allo-
cation of b bits/vector) without retraining the quantizer for
finding optimum codebooks.

According to the algorithmic steps, an input vector is
quantized using the relevant L number of SQs. The L quan-
tized vectors are compared with the input vector in post-
processing stage for choosing the best quantized vector (or
the winning SQ). Thus, the quantized informations are L̂
using log2 M bits and the indices of SQ codebooks using
{bL̂,i}

p
i=1 bits. At the receiver, the reconstructed vector is

obtained after variance de-normalization and mean addition.

Table 1: Details of computational complexity for UGMVQ
method

Operation Complexity (flops)
Pre-processing: Choosing L relevant SQs from M SQs (3p + 1)M + LM

Quantization: Using L optimum SQs and reconstruction
Mean vector subtraction pL

Variance normalization: Find σm,i from σ2
m,i and divide 2pL

Scalar quantization CSQ
Post-processing: Reconstructing L quantized vectors

and choosing the best one using WSED measure
Variance de-normalization: Multiplying by σm,i pL

Mean vector addition pL
Choosing the best one using WSED measure (4p + 1)L

2.4 Computational complexity and memory require-
ment
The details of computational complexity (in flops)1 incurred
for UGMVQ method is shown in Table 1. The total compu-
tational complexity is given as (in flops),

CUGMVQ = (3p + 1 + L)M + (9p + 1)L +CSQ
≈ (3p + 1 + L)M + (9p + 1)L (3)

where CSQ represents the necessary computation for SQ
which maybe considered negligible compared to other terms.

Let us calculate the memory requirement (in floats)2 for
the proposed method. The number of parameters for defining
the GMM with diagonal covariance matrices is: M + 2pM.
Further, for each mth mixture specific optimum SQ, we need
to store the bit allocation vector, i.e. {bm,i}p

i=1. Also, we need
to store a bank of optimum SQ codebooks at different bits
designed for zero mean, unit variance Gaussian random vari-
able. Thus, the total required memory is given as (in floats),

MUGMVQ = M + 2pM + pM +MSQ
≈ (1 + 3p)M (4)

where MSQ represents the necessary memory to store the
bank of optimum SQ codebooks (designed for the zero mean,
unit variance Gaussian random variable) which maybe con-
sidered negligible compared to other terms.

From the above calculations, it is observed that the de-
veloped UGMVQ method functions with a rate-independent
complexity (i.e. computational complexity and memory re-
quirement do not vary with the allocated b bits/vector). It is
clear from Eqn. 3 and Eqn. 4 that the value of M determines
mainly the computational complexity and memory require-
ment, since L�M. However, the computational complexity
is much lower than the GMVQ method of [6], where effec-
tively L = M and additional complexity is required for the
transforms, companding and SD computation.

3. QUANTIZATION EXPERIMENTS

The speech data used in the experiments is from the TIMIT
data base, where the speech is sampled at 16 kHz. We have
used the specification of AMR-WB speech codec [17] to

1In the current literature [6], [11], [14], [13], it is a standard practice
to assume that each operation like addition, subtraction, multiplication, di-
vision and comparison needs one floating point operation (flop). With this
assumption, the codebook search complexity for a b bits/vector VQ using
SED measure is: (3p + 1)2b flops. Using WSED measure, total computa-
tion required is: (4p + 1)2b flops.

2The “float” represents the required memory to store a real value.
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Figure 2: Average SD (in dB) performance of UGMVQ
method for different M and L to choose the optimum M and
L. (a) Performance at 42 bits/vector. (b) Performance at 44
bits/vector.

Table 2: Performance of the developed UGMVQ method
with M = 256 and L = 10

bits/vector Avg. SD SD Outliers (in %)
(dB) 2-4 dB >4 dB

42 1.138 1.86 0.001
43 1.095 1.37 0.000
44 1.054 1.05 0.000
45 1.015 0.82 0.000
46 0.976 0.58 0.000

compute 16-th order LP coefficients (i.e. p = 16), which are
then converted to LSF parameters. In all the experiments,
361,046 LSF vectors are used for training and 87,961 vec-
tors are used for testing (distinct from training data).

To measure the wideband speech LSF quantization per-
formance, we use the traditional measure of SD. The condi-
tions for transparent quality LSF quantization in telephone-
band speech case are [2]:

(1) the average SD is around 1 dB.
(2) no outlier frame ‘> 4 dB’ of SD.
(3) < 2% outlier frames are within the range of 2-4 dB.

It is mentioned in [4] that the same conditions are also valid
for transparent quality quantization of wideband LSF param-
eters, as endorsed in [9], [13], [15]. Thus, we also use the
above mentioned conditions in this paper for evaluating the
wideband speech LSF quantization performance.

3.1 Performance of UGMVQ method
We experimentally find the optimum values of M and L such
that the UGMVQ method provides a reasonable trade-off be-
tween R/D performance and complexity. Fig. 2 shows the
average SD (in dB) performance of the UGMVQ method
for different M and L (at 42 and 44 bits/vector). It is ob-
served that the performance becomes better as M increases;
this is due to the fact that the use of higher number of Gaus-
sian mixtures results in better modeling of the LSF distri-
bution. Also, for each M, the performance becomes bet-
ter and then saturates as L increases, which is utilized to
reduce complexity. We choose M = 256 so that the UG-
MVQ method incurs reasonable complexity. From Fig. 2,
we choose L = 10 for the chosen value of M = 256. Even
though the R/D performance improves for M = 512, but the
complexities increase double-fold compared to M = 256 and
thus, we restrict to M = 256. Table 2 shows the performance
of UGMVQ method for L = 10 and M = 256; the asso-

Table 3: Rate-independent computational complexity and
memory requirement of the UGMVQ method (with M = 256
and L = 10)

Computational complexity (CPU) 16.55 kflops/vector
Memory requirement (ROM) 12.54 kfloats/vector

Table 4: Performance of the traditional split VQ (SVQ)
method

bits/vector Avg. SD Outliers kflops/ kfloats/
SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)
42 1.258 2.63 0.000 24.32 5.63
43 1.214 2.02 0.000 27.64 6.40
44 1.182 1.83 0.000 30.97 7.16
45 1.116 0.97 0.000 35.32 8.19
46 1.074 0.74 0.000 41.98 9.72

ciated rate-independent complexities are shown in Table 3.
From Table 2, it can be observed that the UGMVQ method
provides transparent quality quantization performance at 45
bits/vector.

3.2 Comparison with other methods
We compare the performance of UGMVQ method over the
traditional split VQ (SVQ), and recently proposed SSVQ and
normalized two stage SVQ (NTSSVQ) [15] methods. For
SVQ, SSVQ and NTSSVQ methods, we use WSED mea-
sure for quantization. In [13], it was shown that the SSVQ
requires much lower computational complexity than the
GMVQ method [6] for achieving transparent quality wide-
band LSF quantization performance; also, in [15], NTSSVQ
method was shown to provide comparable R/D performance
with SSVQ at lower computational complexity and memory
requirement.

In the case of SVQ [5], the 16-th dimensional LSF vector
is split into 5 parts of (3,3,3,3,4) dimensional sub-vectors3;
the performance of SVQ is shown in Table 4. The perfor-
mance of five part SSVQ, with 8 switching directions, is
shown in Table 5 where the bit allocation to the split sub-
vectors is carried out according to [13]. Table 6 shows the
performance of the NTSSVQ method where the bit alloca-
tion is carried out according to [15].

It is noted that the developed UGMVQ method func-
tions with rate-independent complexity as shown in Table 3.
Comparing Table 2 and Table 4, it can be observed that
the UGMVQ provides better R/D performance than SVQ at
much lower computational complexity, but with higher mem-
ory requirement; the UGMVQ method saves 3 bits/vector
compared to the SVQ method. Comparing with the perfor-
mance of SSVQ method (Table 5), we observe that the UG-
MVQ method provides nearly same R/D performance; at 45
bits/vector, the UGMVQ method provides transparent qual-
ity quantization performance similar to SSVQ, but at much
lower computational complexity and memory requirement.
We note from Table 6 that the NTSSVQ method is unable
to provide transparent quality quantization performance be-

3Five part SVQ is also implemented in [9] [13] to compare with five part
SSVQ and several other VQ methods.
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Table 5: Performance of the recently proposed switched split
VQ (SSVQ) method

bits/vector Avg. SD Outliers kflops/ kfloats/
SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)
42 1.123 1.28 0.001 19.08 34.94
43 1.071 0.85 0.001 20.74 38.01
44 1.036 0.72 0.000 22.40 41.08
45 1.003 0.59 0.000 25.73 47.23
46 0.967 0.46 0.000 29.06 53.37

Table 6: Performance of the recently proposed normalized
two stage SVQ (NTSSVQ) method

bits/vector Avg. SD Outliers kflops/ kfloats/
SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)
42 1.157 2.38 0.001 13.82 3.84
43 1.100 1.73 0.004 15.39 4.86
44 1.063 1.34 0.003 17.05 5.24
45 1.032 1.17 0.003 18.72 5.63
46 0.972 0.62 0.002 20.89 6.14

cause of its poor performance in the sense of ‘> 4 dB’ out-
liers. Thus, considering both complexity and R/D perfor-
mance, the new UGMVQ method can be chosen as the best
solution for LSF quantization in wide-band speech coding.

4. CONCLUSIONS

We have shown that the the challenging problem of achieving
transparent quality LSF quantization performance in wide-
band speech coding can be addressed using a low complexity
UGMVQ method which is rate-independent and bitrate scal-
able. The new method is shown to perform best compared to
the recent quantizers in the literature. We mention that, there
is still scope for further improvement in R/D performance
considering the theoretical lower bound of [16]; for example,
the loss of space-filling advantage, due to using scalar quan-
tization (SQ) in UGMVQ method, can be partially recovered
using lattice VQ at a moderate increment in complexity.
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