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ABSTRACT
A novel discrete model for the wave�eld propagation is pro-
posed. This model is accurate (and aliasing free) for a pixel-
wise constant object distribution which is invariant on rec-
tangular elements of pixel's size of a digital hologram CCD
sensor. The sizes of object and sensor arrays can be different.
A spacial light modulator (SLM) is a good example of the
object where a pixel-wise invariant distribution appears. We
consider reconstruction of the object complex-valued distri-
bution from the phase-shifting holography data as an inverse
discrete problem. The reconstruction becomes more accu-
rate when the sensor size is larger than the size of the object
aperture. An ef�cient frequency domain algorithm is demon-
strated.

1. INTRODUCTION

The wave�eld reconstruction from intensity and phase mea-
surements is one of the basic problems in digital wave�eld
imaging and holography in particular with application to
high-accuracy measurements [1]. In most studies, a single
wavelength is used to record a digital hologram where an im-
age intensity and depth information is coded in a complex-
valued wave�eld distribution. Some of the standard recon-
struction algorithms mimic the optical procedure when the
hologram is illuminated with a reference beam. In discrete
versions of these methods the recorded hologram is multi-
plied with the complex-valued distribution modeling the ref-
erence beam and the diffraction �eld is calculated.
In the phase-shifting holography, the complex-valued

wave�eld in the hologram plane is calculated from a few
holograms recorded with different phase-shifts of the refer-
ence beam. Then another type of reconstruction algorithms
can be used assuming that a complex-valued wave�eld is al-
ready done in the hologram plane.
A contribution of this paper concerns a few aspects of

digital modelling for optical wave�eld propagation, recon-
struction and design. A novel discrete diffraction transform
.DDT / model of the wave�eld propagation is presented in
Section 3. This model is accurate for a pixel-wise invariant
object distribution, i.e. for a distribution which is piece-wise
constant on rectangular elements of pixel's size of the digital
sensor. This discrete modelling gives accurate and aliasing
free results for any pixel's size. Here we refer to the aliasing
appearing as a result of discretization in the standard discrete
approximations of the wave�eld propagation integrals. This
precise modelling of the wave�eld propagation imitates an
"ideal" physical experiment as it is presented by the integral
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propagation equations. In particular, this accurate modeling
is useful for reliable design and computer testing of digital
holography algorithms because these design and tests can be
based on the precisely modelled observations. For an arbi-
trary continuous object distribution the proposed wave�eld
propagation modelling is approximate with the accuracy de-
pending on the accuracy of the piece-wise �tting of the ob-
ject wave�eld distribution. In this case DDT continues to be
accurate but for the piece-wise approximation of the object
distribution. A spacial light modulator (SLM) generating a
pixel-wise invariant wave�eld distribution is a good example
of the optical system where the developed digital modelling
is relevant.
The frequency domain version of DDT is used for

inverse reconstruction of the object wave�eld distribution
(Sections 4 and 5). The discrete propagation model intro-
duced in this paper is a generalization to arbitrary sizes of
object and image arrays of the model proposed in [2], where
an equal size of the object and image arrays is assumed. The
proposed inverse technique demonstrates very good results in
simulation experiments, in particular, when the sensor array
size is larger than the size of the object array.

2. STANDARD MODELS OF WAVEFIELD
PROPAGATION

The object plane is a source of light radiation/re�ection prop-
agating along the axis z. The image plane is parallel to the
object-plane with a distance z between the planes (see one of
the typical setups in Fig. 1).
Let uz.x; y/ be a complex-valued 2D wave�eld de�ned

in the 3D space (x; y; z) as a function of the lateral x , y and
axial z variables. According to the scalar diffraction theory
there is a linear operator which links the 2D wave�eld dis-
tribution propagating along the axis z with the object wave-
�eld u0.x; y/ at z D 0 as uz.x; y/DDzfu0.x; y/g, where Dz
stands for a diffraction operator with a distance parameter
z. The mathematical theory of this operator representation
can be found in [3], where it is shown, in particular, that the
diffraction operator can be given as an integral convolution

uz.x; y/D
Z Z

gz.x� �; y��/u0.�;�/d�d�, z > 0. (1)

The kernel gz is shift invariant and has a form of the �rst
Raylegh-Sommerfeld solution of the Maxwell-Helmholtz
equation r2uC k2u D 0, where the wavenumber k D 2�=�
and � is a wavelength. This kernel is of the form gz D

z
exp. j2�r=�/

j� � r2
, r D

p
x2C y2C z2, z � 0, [4]. It is shown in

[3] that the operatorDz is invertible and also can be presented
as convolution with a shift-invariant kernel. If the diffraction
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distribution uz.x; y/ is given at the output image plane, the
input object distribution at z D 0 can be reconstructed using
the inverse operator D�1z , i.e. u0.x; y/D D�1z fuz.x; y/g.
One of the fundamental results of the scalar diffraction

theory is that the 2D integral Fourier transform of the kernel
gz has a form [3], [4]

Gz.!x ;!y/D Ffgz.x; y/g D (2)

e
j2�

z
�

p
1�.�!x /2�.�!y/2

; .!x , !y/ 2 D�.

Thus, the diffraction operator with the kernel gz is a low-
pass �lter with a non-zero transfer function on the disc
.�!x /

2C .�!y/2 < 1, with jGz j D 1 and the phase  Gz D
2�
z
�

q
1� .�!x /2� .�!y/2. Here !x and !y are frequencies

in Hz and the disc D� D f.!x , !y/ : .�!x /2C .�!y/2 < 1g
de�nes the area where the transfer function Gz of the opera-
tor Dz is non-zero.
Note that, G�z .!x ;!y/ D G�z.!x ;!y/, then the forward

and inverse frequency domain transforms are of the form

Uz.!x ;!y/D Gz.!x ;!y/U0.!x ;!y/; (3)
U0.!x ;!y/D G�z.!x ;!y/Uz.!x ;!y/; (4)

where Uz.!x ;!y/ D Fx;yfuz.x; y/g DR R
uz.x; y/e� j2�.!x xC!y y/dxdy .
If the spectrums Uz.!x ;!y/, U0.!x ;!y/ are given

the corresponding wave�elds are calculated by the inverse
Fourier transform, for instance

uz.x; y/D
Z Z

Uz.!x ;!y/e j2�.!x xC!y y/d!xd!y : (5)

Discretization of the integrals in the formulas (1), (5)
is a standard idea to derive a discrete model for the wave-
�eld propagation. It is well known that this problem is far
from been trivial. The principal dif�culty of discretization
in the spatial domain (1) follows from the fact that the ker-
nel gz is modulated by a high-frequency harmonic factor
exp. j2�r=�/. The discrete sampling of the rate at least twice
higher than the highest frequency component of the integrand
is a standard remedy. Obviously it can result in an unaccept-
ably high sampling rate.
The discrete modeling of the diffraction transform is a

subject of many publications. The review of this area is far
beyond the scope of this paper. However, we wish to mention
that the discrete space domain modelling for holography is
discussed in details in [1] and the accuracy of the frequency
domain approach is analyzed in [5].
The standard practical discrete models based on the fast

Fourier transform (FFT ) are obtained from the continuous
domain representations (3)-(4). Let the object and image
planes be square of N0� N0, Nz� Nz pixels with the pixel's
size 10�10 and 1z �1z for the object and image planes,
respectively.
If N0 D Nz D N and 10 D 1z D 1, then the so-called

convolution based discrete model is obtained from (3)-(4),
where FFT is used instead of the integral Fourier transform
(e.g. [1], [6]):

NUz. fx ; fy/D NGz. fx ; fy/ NU0. fx ; fy/, (6)
NU0. fx ; fy/D NG�z . fx ; fy/ NUz. fx ; fy/, (7)

where NUz DFFT fuzg, NU0DFFT fu0g and NGz DFFT fgzg
are calculated over the arrays of the size N � N .

3. DISCRETE DIFFRACTION TRANSFORM

Motivation for a discrete model developed in this paper is dif-
ferent from a direct integration of the space domain (1) or fre-
quency domain (5) propagation equations. First, we assume
that the input of our model is discrete de�ned by a pixel-wise
constant object distribution and the output is also discrete as
de�ned by outputs of sensor's pixels. A pixel-wise constant
object distribution means that a distribution as a continuous
variable function is invariant inside of pixels. Under this as-
sumption we integrate the propagation equation (1) and ar-
rive to the discrete-to-discrete modeling where the inputs are
pixel values of the object distribution and the output are the
pixel values of the sensor output.
We name this discrete model discrete diffraction trans-

form (DDT ). It can be presented in spatial and frequency
domains. The following formulas are derived assuming that
1o D1z D1, while the sizes of the object and images arrays
can be different, Nz 7 N0.
In the spatial domain DDT is a form:

uz[k; l]D
N0=2�1X
s;tD�N0=2

az[k� s; l� t]u0[s; t], z > 0, (8)

where the kernel

az[k; l]D
1
12

Z 1=2

�1=2

Z 1=2

�1=2

Z 1=2

�1=2

Z 1=2

�1=2
(9)

gz.k1C � 0C �; l1C�0C�/d�d�d� 0d�0;
k; l D�Na=2; :::;Na=2�1, (10)
Na D NzC N0�1. (11)

FFT cannot be used directly for calculation of the con-
volution (8) even when N0D Nz D N because while the input
u0 and output uz have the same size N � N the support size
of the kernel az is much larger .2N �1/� .2N �1/.
In order to make FFT applicable we use zero-padding

of the variables u0 and uz extended to the extended size
Na� Na , covering the support of the kernel az . In what fol-
lows the wave-tilde .~/ means the corresponding variables
extended by zero-padding to the size Na�Na . The proposed
frequency domain algorithm works with these extended size
variables and exploits the advantage of FFT for fast and ac-
curate calculation of the convolution (8).
The frequency domain calculation of DDT is produced

according the following four step algorithm:
� De�ne FFT for u0 extended to the size Na� Na

QU0. fx ; fy/D FFT f Qu0g D (12)
N0=2�1X

k;lD�N0=2
u0[k; l]W fx kW fy l D

Na=2�1X
k;lD�Na=2

Qu0[k; l]W fx kW fy l ;

W D exp.� j2�=.2Na//,
fx ; fy D�Na=2; :::;Na=2�1,
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� Calculate the transfer function of DDT

QAz. fx ; fy/D FFT f Qazg D (13)
Na=2�1X

u;vD�Na=2
Qaz.u;v/W fxuW fyv;

� Calculate FFT for uz extended to the size Na� Na

QUz. fx ; fy/D QAz. fx ; fy/ QU0. fx ; fy/; (14)

Quz[k; l]D FFT �1f QUz. fx ; fy/g;
k; l D�Na=2; :::;Na=2�1

� Calculate uz of the original size N0� N0

uz.k; l/D Quz[k; l], k; l D�N0=2; :::;N0=2�1. (15)

Let us derive the above formulas. Assume that the distri-
bution u0 allows a pixel-wise constant approximation, then
the integral (1) can be represented as

uz.x; y/D
N0=2�1X
s;tD�N0=2

u0[s; t]� (16)

Z 1=2

�1=2

Z 1=2

�1=2
gz.x� s1C �; y� t1C�/d�d�,

u0[s; t]D u0.s1oC �; t1oC�/, �1=2� �;� < 1=2,

where the sum is calculated over the square array of N0�N0
pixels of the size 1�1.
Let the output signal of any sensor's pixel be the mean

value of the impinging distribution calculated as

uz[k; l]D
1
12

Z 1=2

�1=2

Z 1=2

�1=2
uz.k1C �; l1C�/d�d�. (17)

Inserting (16) into (17) we arrive to the model (8)-(10).
Thus, az is a smoothed (averaged) version of the origi-

nal kernel gz . The averaging in (9) takes into consideration
discretization for both object and sensors arrays. For a pixel-
wise constant object distribution u0 the model (8)-(9) is ac-
curate, i.e. gives the precise distribution for the image plane
regardless conventional requirements concerning the digital
integration for (1).
The frequency domain DDT (12)-(15) exploits the ad-

vantage of the fast Fourier transform .FFT / for accurate cal-
culation of the convolution (8). The arguments of the kernel
az in (8) belongs to the interval [�Na=2;Na=2�1]. In order
to preserve the accurate result for uz[k; l] in (8) when FFT
is used we extend the size N0�N0 of the input array and the
size Nz� Nz of the output arrays by the zero-padding to the
size of the extended interval [�Na=2;Na=2� 1] and de�ne
the equation (8) for this larger area of k and l. Then, rou-
tine manipulations show that the formulas (12)-(15) give the
result identical to (8).
The DDT is different from the integral counterparts in

two important aspects: it accurately takes into consideration
the �nite size of the sensor and as a result it becomes ill-
conditioned.

The DDT model is originated from [2], where it is in-
troduced for Nz D N0. In this paper we extend this approach
to a more general case Nz ? N0 and show that larger values
of Nz > N0 are able to improve the accuracy of wave�eld
reconstruction.
In our implementation of (9) we exploit the Fresnel ap-

proximation of the kernel gz

gz '
exp. j2� z=�/

j� � z
exp[ j

�

�z
.x2C y2/]. (18)

Then az can be written as

az[k; l]'
exp. j2� z=�/

j� � z
�z;�[k]�z;�[l];

where �z;�[k] D 1
1

R 1=2
�1=2

R 1=2
�1=2 exp. j

�

�z
.k1 C � 0 C

�/2/d�d� 0 D 2
R 1
�1.1�

jvj
1 /exp. j

�

�z
.k1Cv/2/dv.

4. DIGITAL HOLOGRAM FORMATION

The basic setup for the in-line phase-shifting holography is
presented in Fig. 1. The object beam and the reference beam
re�ected at the piezoelectric transducer mirror controlled by
a computer are combined at the digital sensor and form inter-
ference pattern [1], [6]. At least three records of this pattern
are acquired which are different by the phase-shifts of the
reference beam. The wave�eld impinging on the sensor can
be presented in the form

I�.x; y/D juz.x; y/Cure f .x; y/e j� j2 D
juz.x; y/j2Cjure f .x; y/j2C

uz.x; y/ure f .x; y/e j�.x;y/Cu�z .x; y/u
�
re f .x; y/e

� j�.x;y/:

Assume for simplicity that ure f and the phase shift are
invariant then the outputs of the sensor pixel are calculated
according to (17) as

I�[k; l]D Iz[k; l]Cjure f j2C (19)

uz[k; l]ure f e j�Cu�z [k; l]u
�
re f e

� j� ,

where

I�[k; l]D
1
12

Z 1=2

�1=2

Z 1=2

�1=2
I�.k1C �; l1C�/d�d�;

Iz[k; l]D
1
12

Z 1=2

�1=2

Z 1=2

�1=2
juz.k1C �; l1C�/j2d�d�;

and uz[k; l] are given by (8).
Let us use for the phase shift �D 0, �=2, � then it follows

from (19) that the wave�eld uz[k; l] can be calculated as

uz[k; l]D
1

4ure f
.I0� I� � j .2I�=2� I0� I� // (20)

and the wave�eld reconstruction is reduced to reconstruction
of the discrete object distribution u0[k; l] from the wave�eld
distribution uz[k; l] given in the sensor plane.
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5. DDT HOLOGRAM RECONSTRUCTION

Reconstruction of the 2D object wave�eld u0 from uz is a
discrete inverse problem. The model (8) can be rewritten in
the vector form uz DAz �u0, where uz 2 RN

2
z and u0 2 RN

2
0

are vectors formed from uz[k; l] and u0[k; l], respectively,
and the Az matrix N 2z � N 20 is formed from az[k; l]. If Az
is a full rank matrix and Nz � N0 a perfect reconstruction
of u0 from uz is possible. However, for usual sensor sizes
(say 512� 512 or 1024� 1024) the dimension of this space
domain model becomes too high for practical calculations
for both the forward prediction of uz from u0 and the back-
ward inverse with reconstruction of u0 from uz . We use the
frequency domain DDT in order to obtain an approximate
simple solution.
Assume that QUz. fx ; fy/ in (14) is given and introduce the

following quadratic criterion

J D jj QUz� QAz QU0jj2C�jj QU0jj2; (21)

where the Euclidean norm jj � jj2 is calculated over the fre-
quencies fx ; fy , for instance jj QU0jj2 D

P
fx ; fy j

QU0. fx ; fy/j2,
and � > 0 is a regularization parameter,
Minimization of J with respect to QU0 gives the minimum

condition in the form @ J=@ OU�0 D 0 and the following solution

OU0 D QA�z � QUz=.j QAz j
2C�2/, (22)

Qu0 D FFT �1f OU0g;
Ou0[k; l]D Qu0[k; l]; k; l D�N0=2; :::;N0=2�1. (23)

Here Ou0 is the regularized inverse estimate of the object
wave�eld distribution. The parameter � > 0 controls a level
of smoothing in the regularized inverse. The extended Na�
Na size frequency characteristic OUz in (22) is calculated from
the zero-padded sensor registered data uz of the size Nz�Nz .
It is assumed in our experiments that the sensor size is

equal to 1 � N0 D 0:01 m. The frequency of the varying on x
harmonic factor exp[ j ��z .x

2C y2/] of the kernel (18) is cal-
culated as 2�x=�z. The maximum values of x is equal to half
of the sensor linear size, xmax D 0:01=2D 0:005 m. Then the
upper bound for the frequency is equal to 2�xmax=�z. For
the wavelength �D 0:632 �m, N0 D 512 and 1D 0:01=512
the Nyquist requirement for the non-alising sampling fol-
lows from the inequality 2�xmax=�z < �=1, i.e. z > zcri t D
21xmax=�D 0:309 m.
In the presented simulation results we assume that z D

0:15 m, i.e. the Nyquist condition is violated. The set of
images in Fig.2 - Fig.4 shows the object distribution recon-
struction for the test image Baboon .512�512/ produced for
Nz D N0 and for the larger sensor size Nz D 1:5 � N0 D 768.
The regularization parameter is selected experimentally as
� D 0:01 �xed in all experiments.
In this modelling the Baboon test image de�nes the phase

u#[k; l] of the object distribution assuming that the amplitude
is equal to 1, u0[k; l] D exp.� j�.u#[k; l]� :5//. The phase
of u0[k; l] takes values in the segment [�:5;0:5],
The observed complex-valued wave�eld .768� 768/ is

shown in the �rst two images in Fig.2. The last image in
Fig.2 shows the phase reconstruction obtained using the stan-
dard convolution based FFT algorithm (7). This reconstruc-
tion completely fails with a periodical disturbance pattern

typical for the aliasing effects destroying the image beyond
recognition.
The results for the DDT reconstructions are shown in

Fig.2 and Fig.3 for the phase and amplitude of the wave�eld.
The quality of imaging becomes much better for the larger
sensor size with nearly perfect reconstruction for the sensor
of the size 1:5 �N0 D 768. This improvement in performance
is illustrated by root-mean-squared-error (RMSE) shown in
the images. The module estimates in Fig.4 also shows the
estimate improvement when the sensor size becomes larger.
The true module in the object plane is invariant and equal to
1 and we can note that for the larger Nz the module estimate
is indeed nearly invariant in lateral coordinates x , y.
The standard algorithm fails for small distances z < zcri t ,

however it works for a larger distances z > zcri t with a de�-
nite visual and numerical accuracy advantage of the proposed
DDT based algorithm. In these experiments the simulated
observations are accurate because the forward DDT gives
the accurate results for any pixel-wise constant object distri-
bution. The used test image de�ned on the 512� 512 array
gives an example of this sort of pixel-wise invariant distribu-
tions. Thus, the produced comparison of the FFT and novel
DDT based algorithms is quite accurate despite the fact that
it is given by simulation only.
Similar experiments for a number of test images with am-

plitude and phase modulation of the object distribution have
been produced and showed the visual and accuracy advan-
tage of the DDT algorithm with respect to the considered
standard convolution based FFT algorithm.

6. CONCLUSION

A novel discrete model for forward wave�eld propagation is
proposed. This model is accurate for a pixel-wise constant
object distribution. A wave�eld reconstruction for phase-
shifting holography is considered as a discrete inverse prob-
lem. For the inverse we use the regularized frequency domain
technique. It is shown that a larger size of the sensor results
in an essential imaging improvement.
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Figure 1: Principal setup of phase-shifting digital holography.
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Figure 2: The �rst two images (768 � 768) are phase and module observations at the sensor plane, respectively. The last
image (512 � 512) is a phase reconstruction obtained by the standard convolution FFT algorithm. It is disturbed beyond
recognition of the test image, i.e. this algorithm fails.
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Figure 3: The phase of the object distribution reconstruction with different sensor size: (a) 512 � 512, RMSE D 0:035; (b)
768 � 768, RMSE D 0:0059; (c) 1024 � 1024, RMSE D 0:0057.
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Figure 4: The module of the object distribution reconstruction with different sensor size: (a) 512 � 512, (b) 768 � 768, (c)
1024 � 1024.
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