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ABSTRACT

In this paper, we focus on burnt area mapping using a single
post-fire high resolution satellite image. Concerning image
classification problems, Support Vector Machines (SVM)
have shown great performances. They learn how to distin-
guish two classes by finding the optimal hyperplane which
maximizes the distance between the hyperplane and the train-
ing examples. In this paper, we propose to use the One-Class
SVM algorithm, an extension of the original two-class SVM
which uses only the positive examples in training and testing.
This classification algorithm is then followed by a hysteresis
thresholding to enhance the image segmentation. To validate
the efficiency of the proposed approach, it is tested on high
resolution satellite images and the results are compared to the
ground truths.

1. INTRODUCTION

Forest Fire is an important environmental issue in forest
ecosystems. Each year, thousands of hectares are burnt in the
Mediterranean countries, specially during the summer sea-
son. Even if forest fires can be beneficial, they endanger the
forest biodiversity by changing the biomass stocks and the
fauna. Moreover, they damage the soil fertility, the water
quality, the hydrological cycles and can also lead to soil ero-
sion.

Assessment of the damage caused by a forest fire plays
an important role after the fire extinction. Indeed, an accurate
detection provides crucial information for forest offices to
plan the restoration and rehabilitation programs. It also helps
the fire brigades to better locate the burnt areas, to understand
the fire propagation and then, to preempt fight against future
fires in the area.

Remote sensing is a valuable tool to assess burnt areas
[1]. Several studies have shown the great potential of re-
mote sensing concerning burnt area mapping since it pro-
vides spectral information on a large surface, even for re-
mote areas [2]. Most of these studies are based on change
detection between multi-temporal series of coarse resolution
satellite images, taken before and after the fire [3].

The main interest of our work is to assess the burnt areas
from a single post-fire high resolution image [4], [5]. Pre-
viously, the discrimination between burnt and unburnt areas
was based on the Support Vectors Machines (SVM) algo-
rithm [6], which is a supervised learning technique. This
technique provides good results in several contexts such as
handwritten digit recognition, pattern recognition or biomed-
ical imagery and has recently been applied to remote sensing
classification problem [7]. Moreover, it has proved to outper-
form classical algorithms such as the K-nearest neighbours

or the maximum likelihood.

Given a training set composed of positive and negative pi-
xels (respectively burnt and unburnt pixels), it aims at finding
the surface which better separates the two sets. The training
set selection represents an important step since it defines the
separating surface. The SVM algorithm regards the classifi-
cation problem as a two-class problem, with equal treatments
w.r.t. positive and negative samples. Concerning the problem
of discriminating burnt from unburnt areas, it is reasonable to
assume that the burnt pixels have similar spectral character-
istics, while the ones for unburnt pixels are completely dif-
ferent as they belong to different classes (forest, water, urban
areas, roads, fields,...).

In this paper, we use the One-Class SVM (OC-SVM) al-
gorithm, an extension of the original two-class SVM which
only uses the positive examples to classify unlabelled pixels.
Thus, this avoids selecting the negative training set and re-
duces the computational cost needed to perform learning and
classification. The discrimination between burnt and unburnt
pixels is performed from the spectral information of the pi-
xels. Moreover, we propose to add a spatial information by
using a hysteresis thresholding [8], which is a well-known
technique for edge detection.

This paper is organized as follows: section 2 presents
the proposed approach, in section 3 the obtained results are
compared to official ground truths and to OC-SVM. Finally,
a conclusion is presented in section 4.

2. THE PROPOSED APPROACH
2.1 Support Vector Machines

Consider a training set {(X7,y:)}ie<1n> where X; € R™ and
yi = £1. Let ¢ be a mapping (¢ : R — F') and K the corre-
sponding kernel: K (X7, x;) = ¢(%7).¢(x7).

The goal of a classifier is to find the separating hyper-
plane defined by: W.¢(X') + b where (W,b) are the param-
eters of the hyperplane (respectively a vector normal to the
hyperplane and the bias).

The final classifier is given by the position w.r.t. the hy-
perplane:

() = sign(.0(F) +b)

SVM aim at maximizing the distance between the Op-
timal Separating Hyperplane (OSH) and the training exam-
ples, while minimizing the classification mistakes for the
training set (see Fig. 1) [9].

Thus, for most of the training examples, we must have:

if yi = +1

WX +b>1
ify;=—1

WX +b<l1
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Optimal Separating Hyperplane

margin :% % (@) +b=1

Figure 1: SVM.

These constraints imply that the margin to maximize, de-
fined by the distance between the equations WX +b=—1
and W.X +b = +1,is equal to HWH Then, most of the train-
ing samples must be on the good side of the tube defined by
the equations W. X +b= —land W.X +b=+1.

The formula to be minimized is:

s
min +C
(w,b,8) i 25

subject to : y;(W.0 (X ) +b) > 1—-&, & >0, Vie (1,N)
where C defines the trade-off between a large margin and a
small training set error and &; are slack variables introduced
to allow some training error while increasing the margin.

By introducing the Lagrange multipliers, the quadratic
problem is equivalent to:

N
th iyiyiK x,,x—;)—i—Z)Li

1j=1 i=1

NIH
["Jz

max W (A
A‘ l

N
subject to : Zaiy,-:o, 0<A<C,Vie(l,N)

i=1

The solution W is then given by: W = YN | Lyid(x7)
and b is obtained from the constraints: )ti.[yi(W).gb(Yi)) +
b)—1]=0

Finally, we have: (%) = sign(¥¥ )t,y,K(Yf, X)+b).

Then, the classification of unlabelled data x is inferred from
the training examples such that A; is not null. These vectors
are called Support Vectors (SV). Moreover, for the SV such
that 0 < A; < C, these vectors are well classified: f(x7) =
sign(y;) = +1 and lie at a distance equal to 1 from the OSH.

Notice that the mapping ¢ does not directly interfere with
the function f, on the contrary of the kernel K. Then, given
a kernel K which has to satisfy Mercer condition [10], we do
not have to compute the mapping ¢. In this study, we choose
the well-known Gaussian kernel:

where o is the variance of the Gaussian.

2.2 One-Class Support Vector Machines

Scholkopf et al. [11] recently extended the SVM metho-
dology to handle training using only positive information.
The OC-SVM aim at estimating the support that can include
most of the positive samples, i.e, finding a function which
is positive in a small region capturing most of the data and
negative elsewhere.

This approach is equivalent to find the surface which sep-
arates the positive data from the origin at a threshold p:

J(X) = sign(w.9(%) —p)

Given [ positive training examples {X; };c<1 >, the min-
imization problem is:

Wl Ly
mmn |———p+— i
(wp,E) [ 2 v.l ;5

subjectto: W.9 (%) >p—&, & >0, Vie (1,])

where v € [0, 1] defines the trade-off between the margin and
the number of training errors.

By introducing the Lagrange multipliers, the quadratic
problem is equivalent to:

[ 1
max W (2) :—gzmwa,a) M)
i=1j=1

[
subjectto: Y Ai=1,0<A < —  Vie(ll) ()

1
= v.l

The solution W is given by: W =Y!_, ¢(7,’) and b is
obtained from the constraints: A;.[w.¢ (X, ) pl=

Finally, we have: f(X) = sign(¥/_ 11K(xl, X)—p).
Then, the classification of unlabelled data X is inferred from
the training examples such that A; is not null. These vectors
are called Support Vectors (SV). Moreover, for the SV such
that 0 < A; < V 77 these vectors lies on the separating surface:
f(x7) = 0. Vectors such that 4; = 0 are on the good side
of the surface: f(%;/) > 0. The ones such that A; = % are
misclassified and on the bad side of the surface: f(%;) <O0.

2.3 Post-processing
2.3.1 Hysteresis thresholding

The OC-SVM classification is defined by the sign of
W.¢(x) — p, which is equivalent to use a single static
threshold value (equal to 0). Nevertheless, this hard binary
decision does not achieve good results due to the overlap be-
tween the negative and positive classes (some burnt pixels
can have spectral characteristics similar to the ones of un-
burnt pixels). Thus, we propose to use a hysteresis threshold-
ing algorithm [8], which gives well-connected edges while
eliminating isolated noisy pixels.

Hysteresis thresholding uses a pair of thresholds, Ty,
and Tj,,, with Tj;e, > Tjy,. The gray-level classification im-
age defined by W.¢(X) — p is first segmented by the hard
threshold 7j;.;,, which gives high-confidence pixels (but can
also allow some false positives). In our case, these pixels are
immediately classified as burnt pixels. The second threshold
operation, this time with the weak threshold 7j,,,, increases
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the size of the burnt clusters previously obtained by the first
threshold while new clusters appear. The final segmentation
is achieved by choosing, among the clusters selected by the
weak threshold, the only ones which are connected to the
high-confidence pixels.

To summarize, all the remaining pixels with classification
value below 7, are totally eliminated (classified as unburnt
pixels). Those with value below Tj;,, are eliminated unless
they are connected to pixels with values above T}, (classi-
fied as burnt pixels). Hysteresis thresholding enhances the
edge of the extracted areas while suppressing some noise.

2.3.2 Mathematical morphology

However, some isolated pixels with classification value
above Ty, can be false positives and generate a false pos-
itive cluster after the second thresholding. Therefore, an ero-
sion procedure [12] is applied to the first segmentation to
eliminate these pixels, considered as noise. This step is un-
derstandable since the burnt area size is generally superior to
one or two pixels for a high-resolution image.

Moreover, it remains some isolated pixels with classifica-
tion value below Ty, inside the positive clusters. Therefore,
a closing procedure [12] is applied to the final segmentation.
This seems also coherent since one or two isolated pixels can
not be completely undamaged inside the burnt areas for a
high-resolution image.

3. EXPERIMENTATIONS

3.1 Model selection

The performance of the OC-SVM and the hysteresis thresh-
old algorithms depends on the choice of the parameters (¢
and v for the OC-SVM and Tj,;e;, and Tj,,, for the hysteresis
thresholding).

A well known way for choosing the SVM parameters is
the K-fold cross-validation technique [10]. It consists in di-
viding the training set in K subsets, training the SVM on K-1
subsets and testing the resulted classification on the remain-
ing subset. The process is repeated K times, one for each
subset and the K tests are averaged to produce a mean er-
ror. The selected parameters are the ones which provide the
smallest mean error.

Concerning OC-SVM, cross-validation technique can not
be used since the training set contains only positive samples.
Indeed, parameters which generate a classifier which is pos-
itive for each point in R™ will produce a mean error equal to
0 but are obviously not relevant.

Notice that Eq. (2) implies that:

1
1 1
1= A< —and 0< A < —
1;1 _van - T vl

which means that v is an upper bound on the fraction of out-
liers (misclassified training samples) and v is a lower bound
on the fraction of SV. Thus, v can be set to the estimated
fraction of outliers in the training data.

Ratsch et al. [13] proposed a method to choose the OC-
SVM parameters by adding some negative points to the train-
ing set and selecting the parameters which separate both
classes best.

The two thresholds can be set by the user to improve the
resulted segmentation. However, they must be in a certain

range of values defined by the classifier values of the training
set: {W.¢(x7) —p }ic<1 s>

For instance, Fig. 2 shows the positions of the training
set and of the level sets of the OC-SVM classifier, i.e. level
sets of W.¢(X) — p, in the 2D-case, given a couple of pa-
rameters (0, V). The red level set represents the OC-SVM
separating surface (level set such that .9 (X)) —p = 0), the
blue crosses and rounds respectively correspond to non-SV
(the ones that lie inside the curve) and the SV (the ones that
lie on or outside the curve).

Hysteresis thresholding is applied to the OC-SVM clas-
sifier. Acceptable values of the 7}, and Tj,,, thresholds re-
spectively correspond to level sets which includes a little less
and a little more training vectors than the zero level set (the
first curves inside and outside the red curve in Figure 2). The
threshold defined by the second level set inside the zero level
set is too high since it includes too few training vectors. The
one defines by the second level set outside the zero level set
is too low since it includes all the training vectors and is too
far from some outliers.

Classifier level set

Figure 2: OC-SVM classifier level set

3.2 Tests on high resolution satellite images

The data used in the experiments are SPOT 5 satellite im-
ages representing Southern France areas (the French Riviera
and Corsica). Data resolution is 10 meter and they consist
in about 2000*2000 pixels with 4 bands (Green, Red, Near
Infra-Red and Mid Infra-Red). About 130 training samples
were manually selected to form the training set. Only burnt
area pixels which are visibly distinct are used as training
samples.

The structuring element for the erosion and closing pro-
cedures must have a small size in order to avoid erasing true
positives and adding false positives. Indeed, due to mete-
orological conditions and area relief, fire can leave some
unburnt patches inside the burnt forest. For our study, we
choose a four-connected or eight-connected neighbourhoods.
Notice that, for instance, an erosion with a eight-connected
structuring element implies removal of clusters whose size
is less than 9 pixels, i.e. almost 0.1 hectare for a 10-meter-
resolution image.

Fig. 3 deals with the area of Cannes-Mandelieu, which
burnt in 2007. It shows the satellite SPOT 5 image (3a), the
ground truth (3c), the extracted burnt area for the simple OC-
SVM classification when no hysteresis is used (3e) and some
step of the proposed approach (the OC-SVM classifier, the
first segmentation using Tj;ep, the final classification using
Tiow). Notice that, for the same reasons as before, opening
and closing processes [12] are applied to the simple OC-
SVM classification in order to allow a fair comparison be-
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(a) SPOT 5 image (©) CNES 2007, Distribu-
tion SPOT Image

(c) Satellite Estimate - RISK-EOS project
©]Infoterra-ESA

(e) OC-SVM only

(f) Final extracted burnt areas

Figure 3: Burnt area in Cannes-Mandelieu, France, 2007, size: 450 ha.

tween the two classifications (Fig. 3e-3f). The corresponding
burnt area estimate, computed from Landsat satellite images
(30-meter-resolution) was given by Infoterra-ESA and con-
stitute our ground truth.

Fig. 3b shows values of the OC-SVM classifier when
input data are defined by the four spectral components of pi-
xels. Fig. 3d represents the OC-SVM classifier after thresh-
olding with Tj;.;,. Then, the isolated pixels are eliminated by
the erosion process (considered as noise) and the remaining
pixels define seed regions that grow and generate the hystere-
sis classification after thresholding with 7j,,,. Fig. 3f shows
the final classification obtained after the closing process.

Fig. 4 show the ROC, i.e. the sensitivity of the proposed
approach w.r.t. the two thresholds. The green and red dots
correspond respectively to the Figures 3e and 3f.

Fig. 5 deals with the area of Bastia in Corsica, which
burnt in 2005. It gives the same subfigures as in Fig. 3.

Several images were used to test the efficiency of the
proposed approach but only two are displayed in this paper.
When comparing to the ground truths, hysteresis threshold-
ing of the OC-SVM classifier outperforms single threshold-

ing (i.e. simple OC-SVM). Indeed, when combining OC-
SVM and hysteresis thresholding, the number of false pos-
itives is lower (see Fig. 3) and the edges of the extracted
burnt areas are more accurate (see Fig. 5). The main advan-
tages of the proposed method is to use the spatial information
to the pixel-based classification technique to improve its re-
sults. Moreover, hysteresis thresholding is simple and very
fast to use (it takes about 1 second for a 2000%2000 pixel
image).

[3 4 & % 10
False Positives

Figure 4: ROC
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s Rk 2T
(a) SPOT 5 image © CNES
2005,Distribution SPOT Image

(b) OC-SVM Classifier

(c) Satellite Estimate - RISK-
EOS project (© Infoterra-ESA

(d) OC-SVM classifier thresh-
olding with Tjgp,

(e) OC-SVM only (f) Final extracted burnt area

Figure 5: Burnt area in Corsica, France, 2005, size: 2 ha.

When using classical SVM algorithm, people can expect
better results than the OC-SVM which is obvious since it
uses a negative training set. Hysteresis thresholding can also
be applied to the SVM classifier in order to improve the clas-
sification. Nevertheless, when combining the SVM with a
hysteresis thresholding, the resulting accuracy is hardly bet-
ter compared to the combination of OC-SVM with hysteresis
thresholding, while increasing noticeably the computational
cost to perform learning and classification.

4. CONCLUSION

In this paper, burnt area mapping using a single post-fire
high-resolution image is investigated. The proposed ap-
proach is based on an extension of the SVM, the OC-SVM
algorithm which only uses positive samples for training and
testing. First, for each pixel, OC-SVM give a confidence
degree of positivity thanks to pixel spectral values. Then,
we use a hysteresis thresholding in order to combine both
spectral and spatial information. The obtained results show a
better agreement with the ground truths and satellite images
than using the OC-SVM only. The hysteresis thresholding
technique allows to improve the extracted area edge while
decreasing the number of false alarms.

Future work will focus on the automatic selection of the
positive training set and the parameters which define the clas-
sification.
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