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ABSTRACT

This paper introduces novel features for Voice Activity De-
tection (VAD). They are based on the coherence function be-
tween the considered frame and its LPC residue, calculated
for both periodic and aperiodic components. The develop-
ment of these features was motivated by the possible distinc-
tion between the periodicity and the aperiodicity character
of speech and noise frames. Two statistical based decision
techniques are used, they are the Discriminant Analysis (DA)
and Gaussian Mixture Models (GMM) based bayesian clas-
sifier. We tested the proposed VAD technique on TIMIT
database. We obtain consistent improvement as compared
to features without periodic and aperiodic decomposition. In
addition, we obtain encouraging results in real environmen-
tal noise.
Index Terms: Voice Activity Detection, Peri-
odic/Aperiodic Coherence based features, Discriminant
Analysis, Gaussian Mixture Model classifier.

1. INTRODUCTION

The Voice Activity Detection (VAD) is a classification prob-
lem used to discriminate between speech frames and silence
frames in an audio sequence. It plays a crucial role in many
speech processing techniques such as speech enhancement,
speech coding, speech recognition, voice over IP, mobile tele-
phony, etc.

The VAD task becomes difficult in the presence of back-
ground noise which alters the characteristics of the speech
waveform because of its high level or its characteristics which
may be similar to that of speech (talking noise, street noise,
etc).

In general, VAD consists on two parts: acoustic fea-
tures extraction and decision module. The feature extraction
reduces the input data dimensionality by representing the
frame to be classified by a reduced number of parameters.
The features nature depends on the application (Mel Fre-
quency Cepstral Coefficients for speech recognition [1], pow-
ers in band-limited regions for UMTS variable rate speech
coding [2], delta line spectral frequencies for G.729 speech
coding [3], etc).

Another category of features which can be used for VAD
is related to speech linear prediction. In fact, speech frames,
well modeled by an auto-regresssive model can be described
by the prediction coefficients and the LPC residual error (see
for example [4]). In previous works, we developed features
which manipulate both linear prediction and coherence tech-
nique. More precisely, the similarity between the residual
prediction signal and the signal itself is exploited in the fre-
quency domain [5], creating coherence features.

In this paper, such coherence features are improved
thanks to Periodic/APeriodic decomposition (PAP). Our
method decomposes observed frames into their periodic and
aperiodic components and calculates coherence features of
these components. The term ‘aperiodic component’ includes
both environmental noise and speech aperiodic components.

The term ‘periodic component’ includes the dominant har-
monic part of speech.

The classification strategy can be either manual or ma-
chine learning. The manual strategy makes use of thresholds
for each feature provided by the user. The machine learn-
ing algorithms are usually based on statistical methods such
as Neural Networks and Hidden Markovian Models. In this
work, we use Discriminant Analysis technique and bayesian
approach based on Gaussian Mixture Models (GMM).

The paper is organized as follows. Section 2 gives an
overview about coherence based features developed in pre-
vious works. Section 3 is devoted to the description of pro-
posed features which are justified in detail in section 4. The
decision strategies based on DA and GMM are presented in
section 5. Experimental results with white Gaussian noise
and real environments noises are given in section 6. Finally,
concluding remarks are drawn in section 7.

2. COHERENCE BASED FEATURES
OVERVIEW

2.1 Basic idea

A noisy speech signal x(k) is composed of a clean signal s(k)
which should be active speech or silence and an additive noise
n(k):

x(k) = s(k) + n(k). (1)

It is well known that speech can be modeled by an autore-
gressive process. Its prediction error is given by:

es(k) = s(k) − P
T (k)S(k − 1), (2)

where P (k) = [p1(k), p2(k), .., pLP
(k)]T is the predic-

tor, LP is the predictor taps number and S(k − 1) =

[s(k − 1), s(k − 2), .., s(k − LP )]T is the past input vec-
tor. Classically, when considering the quasi-stationarity of
speech, the predictor is calculated frame by frame using the
classical Levinson-Durbin algorithm.

The linear prediction residue constitutes the excitation
source [6]. It is a quasi-random white noise for unvoiced
frames and a quite periodic signal for the voiced frames. The
similarity between the considered speech frame and its pre-
diction residue is then weak. On the other hand, during
silence, the considered frame is noise and the similarity be-
tween noise and its prediction residue is huge (since the noise
is not an autoregresive process).

For noisy speech signals, the prediction residue is com-
posed of two terms:

e(k) = es(k) + ñ(k), (3)

where es(k) is the prediction residue of s(k) and ñ(k) is
an additive noise related to n(k). When n(k) is white,
ñ(k) = n(k) and the properties about similarity between
clean speech and its prediction residue are maintained for
noisy speech.
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Figure 1: Averaged coherence function between noisy signal
and its prediction residue .

According to this noting, the similarity between the con-
sidered speech frame and its prediction residue is a possible
solution to propose features for voice activity detection. It is
operated on the frequency domain by means of the coherence
function.

2.2 Coherence function

The well known coherence function is usually used to mea-
sure the similarity between two signals [7]. It is developed in
the frequency domain where short-time spectrum are com-
puted using FFT. The data are segmented into frames of 16
ms and the coherence function of the mth segment is defined
as:

Cx,e(m, f) =
Px,e(m, f)

√

Px,x(m, f)Pe,e(m, f)
, (4)

where Px,x(m, f) and Pe,e(m, f) are spectral densities
of mth frame of signals x(k) and e(k) respectively and
Px,e(m, f) is the inter-signal spectral density.

Fig.1 represents the averaged coherence function ob-
tained by averaging Cx,e(m, f) for a large number of voiced,
unvoiced and silence frames. We notice that pure noise dur-
ing silence intervals has coherence values around one for
the whole frequency interval. The voiced frames have small
coherence values (between zero and 0.3) whereas unvoiced
frames have intermediate coherence values.

Fig.1 inspires us the following idea: instead of manip-
ulating all frequency bins of coherence function for VAD
descriptor, we simplify the procedure by considering their
mean:

E
m =

1

N

∑

f∈[0,Fe/2]

|Cx,e(m, f)|, (5)

where Fe is the sampling frequency and N is frequency bins
number during FFT calculation.

The ranges of values of Em for speech and silence are
well separated (large for silence and small for speech). Such
descriptor permits to limit the number of features and hence
reduces the calculus complexity .

3. PAP COHERENCE FEATURES

According to the fact that the descriptor Em is large during
silence and small during active speech, the VAD decision can
simply be limited to thresholding. However, when speech is
affected by some real noises (such as restaurant, talking,...),
the classification by thresholding concept completely fails.

This fact is due to noise characteristics (colored/white, sta-
tionary or not, speech-like or not, comfortable or not, etc).

In a previous work, we improved the decision part by us-
ing fuzzy logic based decision which is suitable for problems
requiring approximate rather than exact solutions [8]. In
this paper, we investigate an alternative solution to improve
VAD descriptors by introducing the PAP decomposition.

3.1 PAP overview

We propose to refine the previous feature by taking into ac-
count more properties about speech components and their
related prediction residues. In fact, we propose to decom-
pose the speech observation into two sub-signals: the peri-
odic and the aperiodic components. The periodic component
is associated to the “deterministic” or “harmonic” part while
the aperiodic component is associated to the “stochastic” or
“random” or “noise” part of the observation. For noise-free
speech, we separate harmonic speech parts from noise-like
speech parts. In case of noisy speech, we separate harmonic
speech parts from noise-like parts of both speech and back-
ground noise. In fact, in major cases, the background noise is
randomly distributed and does not include harmonic parts.
The justification of the use of PAP decomposition for VAD
is detailed in section 4.

In this paper, we used the periodic/aperiodic decompo-
sition proposed in [9]. A first approximation of the aperiodic
component is obtained using the liftered cepstrum principle
which estimates first the pitch location and then the inhar-
monic frequency regions. The aperiodic approximation is
refined using an iterative algorithm based on successive Dis-
crete Fourier Transforms and Inverse Discrete Fourier Trans-
forms. After algorithm convergence, the periodic component
is obtained by subtracting the reconstructed aperiodic com-
ponent from the considered speech frame.

3.2 Features principle

The VAD features algorithm steps are the following (see
Fig. 2).
• The whole speech sequence is decomposed into two sub-
signals: the periodic sub-signal and the aperiodic sub-signal.
• Each sub-signal is segmented into frames of 16 ms dura-
tion. We denote xm

p (k) (resp. xm
ap(k)) the kth sample relative

to mth frame of periodic (resp. aperiodic) part and em
p (k)

(resp. em
ap(k)) the related prediction residues.

• The mth frame coherence functions of aperiodic and ape-
riodic parts are defined as

Cxj ,ej
(m, f) =

Γxj ,ej
(m, f)

√

Γxj ,xj
(m, f)Γej ,ej

(m, f)
, (6)

where j ∈ {p, ap} denotes the kind of sub-signal (periodic or
aperiodic), Γxj ,xj

(m, f) and Γej ,ej
(m, f) are spectral densi-

ties of signals xm
j (k) and em

j (k) respectively. Γxj ,ej
(m, f) is

the inter-signal spectral density between xm
j (k) and em

j (k).
• The average of each coherence function in the whole fre-
quency band is calculated and constitutes the VAD features.

CFF
m
j =

1

N

∑

f∈[0,Fe/2]

|Cxj ,ej
(m, f)|. (7)

Both CFFm
p and CFFm

ap constitute the set of parameters to
be used for VAD.

4. JUSTIFICATION OF PROPOSED FEATURES

4.1 Particular case of ideal periodic and ideal ape-
riodic speech frames

Let’s consider two noisy speech frames characterized by the
same coherence feature value α calculated on original speech
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Figure 2: Block diagram of the proposed VAD.

without PAP. The first speech is an ‘ideal periodic’ frame
(denoted sp) composed of only periodic components and the
second one can be either an ‘ideal aperiodic’ speech frame or
a silence frame in presence of noise composed of only noise-
like components (denoted sap).

They are both considered in the noisy context. The noisy
frame is written xm(k) = sm

p (k) + nm(k) for ideal periodic
frame and it is written xm(k) = sm

ap(k)+nm(k) for ideal ape-
riodic frame. nm(k) is the additive noise and we’ll consider
the case of white Gaussian noise, which corresponds to an
ideal aperiodic signal.

After PAP decomposition, we obtain the following sub-
signals and coherence features.

• Ideal periodic speech frame: The periodic sub-signal is
exactly the considered speech frame xm

p (k) = sm
p (k)

whereas the aperiodic sub-signal is the considered noise
xm

ap = nm(k). The periodic LPC residue em
p (k) is the

same as the one obtained for clean speech sm
p (k). We

show easily by coherence features calculus and compari-
son that CFFm

p ≤ α.
The aperiodic LPC residue em

ap(k) is the additive noise
nm(k) and the coherence feature is close to one CFFm

ap ≈
1 [11].

• Ideal aperiodic speech frame: The periodic sub-signal
is quasi-null xm

p (k) ≈ 0 and the aperiodic sub-signal is
composed of the considered speech frame and the addi-
tive noise xm

ap(k) = sm
ap(k) + nm(k). The periodic LPC

residue is then null em
p (k) ≈ 0 and the coherence feature

is close to one CFFm
p = 1. The aperiodic LPC residue is

composed of the speech frame residue which is denoted
em

sap
(k) and the additive noise em

ap(k) = em
sap

(k) + nm(k).
We show easily by coherence features calculus and com-
parison that CFFm

ap ≈ α [11].

Hence, we can conclude that speech frames having the
same coherence feature Em can be differentiated according
to their periodic and aperiodic coherence features. In fact,
periodic frames have smaller values of periodic coherence fea-
ture than the initial coherence feature without PAP whereas
its aperiodic coherence feature is close to one. By the other
side, the aperiodic speech frames have the periodic coherence
feature equal to one whereas the aperiodic coherence feature
is closer the one obtained without PAP.

4.2 Case of real speech frames

In practice, a speech frame is a mixture of periodic and ape-
riodic components. Periodic parts are for example steady
parts of vowels and voiced consonants, aperiodic parts are for
example fluctuations included in vowels, stop, fricative and
affricate consonants. We expect that periodic and aperiodic
coherence features during silence are always close to one. For
speech frames, aperiodic components coherence is different
from the classic coherence feature. However, periodic com-
ponents coherence depends on the frame type. For unvoiced
frames, it is close to one. For voiced frames, the range of
variation is large since the coherence depends strongly on

Figure 3: Evolution of Em, CFFm
p and CFFm

ap for speech
and silence frames.

voicing importance.

As an illustration of the previous analysis, Fig. 3 shows
the evolution of coherence, periodic and aperiodic coherence
features for a noisy speech sentence (SNR = 10 dB) com-
posed of intervals of silence and speech indicated by the real
VAD (multiplied by 1.2). We notice that silence frames have
all coherence features close to one. During speech frames, the
coherence feature Em ranges from 0.55 to 1. The aperiodic
coherence feature CFFm

ap ranges from 0.6 to 1 whereas the
periodic coherence feature CFFm

p ranges from 0.2 to 1. Such
large range of variation will helps on frames classification.

5. VAD DECISION STRATEGY

There are many techniques for features classification. We
are interested in statistical supervised techniques where a
training data is used to construct decision functions. Then,
performances are evaluated in test data. the data used in
this work comes from the popular TIMIT database. We
used 300000 speech frames pronounced by 438 male and 192
female speakers and 180000 silence frames. 60% of frames
are used for training and 40% are used for test.

5.1 Discriminant Analysis for VAD

Discriminant Analysis (DA) is a parametric classification ap-
proach which uses a decision function that tries to maximize
the distance between the centroids of each class of the train-
ing data and at the same time minimizes the distance of the
data from the centroid of the class to which it belongs. It
is named linear if the decision function is linear in the input
data, quadratic if the decision function is quadratic,...

We used the training sequence to estimate the Discrimi-
nant Analysis classifier in noiseless case. Fig.4 shows the two
classes in the plan (periodic-aperiodic) features. The regions
for the two groups are well separated. We notice also that,
as expected (section 4), silence periodic and aperiodic fea-
tures are close to one. Speech frames periodic and aperiodic
features take a wide range of values in the interval [0, 1] and
lie in the remaining part of the plan.
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Figure 4: Speech and silence classes using Discriminant
Analysis in noiseless case.

Figure 5: GMM distributions for the VAD classes.

5.2 Bayesian calssifier for VAD

We used bayesian classification based on probability the-
ory. The posterior probabilities are then computed with the
Bayes formula and one class is chosen if it has the high-
est posterior probability. We used the GMMBayes Matlab
toolbox [10] which contain efficient classification functional-
ity (training and classification) based on statistical theory
(Bayesian inference) and Gaussian mixture model probabil-
ity densities.

A Gaussian mixture is a weighted sum of Gaussian dis-
tributions whos model parameters are computed from the
training data using Figueiredo-Jain algorithm which finds
the “best” overall model directly using an iterative approach.
The method is based on Minimum Message Length MML-like
criterion which is directly implemented by a modification of
the Expectation-Maximization algorithm (EM) [12].

Fig. 5 illustrates features histograms calculated for
noisy training database (SNR = 10dB). It can be seen that
• Periodic and aperiodic silence histograms are merged into
one histogram and occupy a quite large range around 0.85.
• Aperiodic speech histogram is concentrated around 0.95
• Periodic speech histogram occupy two separate regions
(one large region around 0.35 and one small region with a
peak atound 0.9.

6. EXPERIMENTAL RESULTS

To examine the validity of the proposed features, we con-
ducted experiments using clean TIMIT database for the
speech data. We added silence intervals between sentences
and we added an artificial white Gaussian noise to simulate
the noisy environment. We tested the following features.

• the coherence feature Em calculated for original speech
sequences (without PAP).

• 9 coherence features calculated for original speech se-
quences. Each coherence feature is obtained in a se-
lected frequency band. Such features are developed for
voiced/unvoiced/silence speech classification [13].

• Proposed periodic and aperiodic coherence features.

To evaluate the effectiveness of the proposed approach, the
probabilities of correct and false detection are computed. We
denote:

• Pe : the probability of false decision. It is calculated
as the ratio of incorrectly classified frames to the total
number of frames.

• Psp (resp. Psi): the probability of correct speech (resp.
silence) decision. It is calculated as the ratio of correctly
classified speech (resp. silence) frames to the total num-
ber of speech (resp. silence) frames.

We used the Discriminant Analysis and bayesian classi-
fication based on GMM modelization for the three kinds of
features. Tab. 1 illustrates performances of VAD. The two
cases of noiseless and noisy environments (SNR = 10dB)
are tested. Tab. 1 permits the following interpretations.

• In noiseless case, the VAD is well precise (Pe varies from
3.34% to 1.69%). The GMM 9 bands gives better re-
sults in term of Pe. The PAP improves performances in
term of probability of correct detection. DA is better
for speech classification while GMM is better for silence
classification.

• In noisy case, the error rate increases. The GMMPAP

is the best in term of Pe while DAPAP is well suited
for speech detection and DA9B is well suited for silence
detection.

• When comparing different features for the same classi-
fication technique (GMM or DA), we notice that each
kind of features is suited for a selected criterion. How-
ever, the PAP decomposition improves performances in
many cases.

Table 1: Performance in term of speech/silence classification
with TIMIT database.

(%) Technique Pe Psp Psi

Noiseless DAglob 3.34 98.52 95.57
DA9B 1.86 98.2 96.6

DAPAP 3.18 99.19 95.44
GMMglob 3.33 97.7 96.08
GMM9B 1.69 95.5 95.4

GMMPAP 2.75 98.72 96.40

SNR = 10dB DAglob 18.13 96.91 72.60
DA9B 23.7 76 95.7

DAPAP 14.69 98.35 77.28
GMMglob 17.72 93.62 75.29
GMM9B 17.27 70 88

GMMPAP 13.66 92.67 82.44

Furthermore, we analyze the influence of the amount of
noise in VAD performances. Hence, for different values of
SNR, we calculate the different features and test different
classification techniques. Results are summarized in Tab. 2
for a long speech sequence of duration 1 minute. We notice
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the improvement of performances thanks to the use of PAP
decomposition in features calculus.

Table 2: Performance in term of speech/silence classification
for additive white Gaussian noise. Case of a long speech
sequence.

(%) Technique Pe Psp Psi

Noiseless DAglob 7.5 97.87 87.28
DAPAP 5.54 90.16 98.9

GMMglob 6.73 89.97 96.75
GMMPAP 5.49 91.42 97.76

SNR = 20dB DAglob 7.32 86.13 99.59
DAPAP 5.84 89.01 99.59

GMMglob 6.63 87.66 99.39
GMMPAP 5.84 89.39 99.19

SNR = 10dB DAglob 13.55 73.6 100
DAPAP 10.89 79 99.7

GMMglob 13.31 74.73 99.29
GMMPAP 10.84 79.17 99.7

SNR = 0dB DAglob 32.1 38.63 98.7
DAPAP 30.08 41.3 100

GMMglob 29.14 49.57 93.29
GMMPAP 27.61 52.46 93.39

We also propose to justify our approach for real environ-
ment noise, namely car noise, flat noise and babble noise.
The car noise is correlated and present low frequency spec-
tral characteristics, the flat noise looks like a white noise and
the babble noise contains some tone components which can
be viewed as harmonic components of speech. Tab. 3 il-
lustrates the proposed algorithm performances. It confirms
once again the usefulness of PAP decomposition to improve
VAD performances (except in case of automobile noise). Fur-
thermore, we remark that we detect more efficiently silence
fra mes than speech frames. In fact, some speech frames such
as unvoiced frames looks like noise and are not well selected.

Table 3: Performance in term of speech/silence classification
for different kinds of noise SNR = 10dB.

(%) Technique Pe Psp Psi

Babble DAglob 32.49 44.51 91.77
DAPAP 28.5 79.46 63.11

GMMglob 29.84 53.04 88.21
GMMPAP 27.21 72.13 73.48

Flat DAglob 23.05 55.3 99.7
communications DAPAP 9.85 81 99.7

noise GMMglob 17.91 66.25 98.78
GMMPAP 9.4 81.97 99.9

Automobile DAglob 22.21 60.5 96.04
highway DAPAP 35.28 41.47 89.23

noise GMMglob 22.17 77.82 77.85
GMMPAP 38.84 75.22 46.34

7. CONCLUSION

In this paper, we proposed a noise robust VAD method based
on periodic and aperiodic coherence features and statistical
decision techniques. The experiments confirmed that the
proposed features perform better than those obtained with-
out PAP decomposition. In the future, we will affine periodic
and aperiodic coherence features by considering them in dif-
ferent frequency bands as it was done for VAD without PAP.
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