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ABSTRACT
In many practical parameter estimation problems, the statis-
tical properties of the sources can be exploited to improve the
quality of the estimates. In this paper we consider the corre-
lation and Kullback matching criteria (CM and KM respec-
tively), which are applied to the problem of blind channel
estimation under orthogonal space-time block coded (OS-
TBC) transmissions. Specifically, it is shown that the special
OSTBC structure provides straightforward closed form solu-
tions, which reduce to the extraction of the principal eigen-
vector of the observation correlation matrix modified by the
code matrices and a set of weighting factors. Additionally,
we prove that the KM technique is equivalent to the CM
approach for low SNRs, and to the relaxed blind maximum
likelihood (ML) decoder for high SNRs. Finally, the perfor-
mance of the proposed techniques is illustrated by means of
several simulation examples.

1. INTRODUCTION

There is a large number of parameter estimation problems
where the statistical properties of the inputs can be exploited
to obtain accurate parameter estimates. Two well-known
criteria based on this idea are the correlation and Kullback
matching approaches (CM and KM respectively). On one
hand, the CM approach amounts to minimizing the Euclid-
ian distance between the empirical and theoretical correlation
matrices of the observations. This technique has been applied
in blind channel estimation and equalization problems [1–3],
and under certain assumptions, it asymptotically provides the
unbiased estimator with minimum variance [1, 2]. On the
other hand, the KM criteria stems from the field of infor-
mation geometry [4, 5], and it amounts to minimizing the
Kullback-Leibler divergence between the empirical and theo-
retical pdfs of the observations, which is closely related with
the maximum-likelihood (ML) estimation problem [5–8].
However, in general both criteria result in non-linear opti-
mization problems, which must be solved by means of nu-
merical methods.

In this paper we apply the CM and KM approaches to
the problem of blind channel estimation under orthogonal
space time block coded (OSTBC) transmissions [9], show-
ing that the special OSTBC structure permits the solution
of both problems in closed form. Specifically, the CM and
KM criteria reduce to the extraction of the main eigenvec-
tor of a matrix, which is obtained from the correlation ma-
trix of the observations, the OSTBC code matrices, and a set
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of weighting factors. In the CM case, the weights are fixed
and given by the eigenvalues of the source correlation ma-
trix, whereas in the KM case the weights not only depend on
the source eigenvalues, but also on the signal to noise ratio
(SNR). Additionally, it is shown that, in the case of uncorre-
lated and equipower sources, both techniques reduce to the
relaxed blind ML decoder.

The analysis of the KM weights permits a straightforward
interpretation of the proposed techniques. On one hand, in
the high noise regime, the KM technique is equivalent to the
CM criterion, i.e., the channel state information is extracted
from the previous knowledge of the source correlation ma-
trix. On the other hand, in the low noise regime the KM
technique is asymptotically equivalent to the relaxed blind
ML decoder, which means that the channel is not extracted
from the estimates of the correlation matrices, which can be
inaccurate due to the finite sample problem, but from the con-
gruence of the data model. This suggests that the best results
should be provided by the KM criterion, which is corrobo-
rated by means of some numerical examples.

2. OSTBC DATA MODEL AND MAIN
ASSUMPTIONS

2.1 Notation and OSTBC Data Model

Throughout this paper we will use bold-faced upper case
letters to denote matrices, bold-faced lower case letters for
column vector, and light-faced lower case letters for scalar
quantities. The superscript ˆ(·) will denote estimated matri-
ces, vectors or scalars. The trace and Frobenius norm of
matrix A will be denoted as Tr(A) and ‖A‖, respectively,
vec(A) will denote the columnwise vectorized form of ma-
trix A, and diag(a) will denote the diagonal matrix defined
by vector a. Finally, the identity and zero matrices of the
required dimensions will be denoted as I and 0, respectively.

Let us assume a flat fading multiple-input multiple-
output (MIMO) system with nT transmit and nR receive an-
tennas, and affected by a zero mean i.i.d. complex Gaussian
noise with variance σ2. The MIMO channel, which remains
constant during the transmission of N OSTBC blocks, will
be represented by the matrix H ∈ CnT×nR . Thus, using the
notation in [10–12], and assuming an OSTBC transmitting
M symbols during L time slots (transmission rate R = M/L),
the observations associated to the n-th OSTBC block can be
represented by the following real data model

ỹ[n] = W̃(H)s[n]+ ñ[n], (1)
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where ỹ[n] ∈ R2LnR×1 contains the real and imaginary parts
of the observations, s[n] = [s1[n], . . . ,sM′ [n]]T contains the
M′ (M′ = 2M in the general case of complex OSTBCs) real
information symbols transmitted in the n-th block, ñ[n] ∈
R2LnR×1 is a real i.i.d. Gaussian noise vector with vari-
ance σ2/2, and W̃(H) ∈ R2LnR×M′ is the equivalent chan-
nel, whose k-th column is given by w̃k(H) = D̃kh̃, with
h̃ = vec(

[
ℜT (H) ℑT (H)

]T ),

D̃k =

C̃k · · · 0
...

. . .
...

0 · · · C̃k


︸ ︷︷ ︸

2LnR×2nT nR

, C̃k =
[

ℜ(Ck) −ℑ(Ck)
ℑ(Ck) ℜ(Ck)

]
︸ ︷︷ ︸

2L×2nT

,

and where Ck ∈ CL×nT (k = 1, . . . ,M′) are the OSTBC code
matrices. These matrices fulfill the following orthogonality
property

W̃T (H)W̃(H) = ‖H‖2I, ∀H, (2)

which, under perfect channel state information (CSI), re-
duces the complexity of the maximum likelihood (ML) re-
ceiver to a matched filter followed by a symbol by symbol
detector.

ŝML[n] =
W̃T (H)ỹ[n]
‖H‖2 .

2.2 Assumption on the Correlation of the Sources

During this paper we will assume that the correlation matrix
Λs = E[s[n]sT [n]] of the sources is known and diagonal with
elements λ1 ≥ λ2 ≥ ·· · ≥ λM′ . However, we must note that
this is not a restrictive condition. In the case of correlation
matrices of the general form Rs = QsΛsQT

s (with Qs an
orthogonal matrix), the data model in (1) can be rewritten as
ỹ = W̃′(H)s′[n] + ñ[n], where W̃′(H) = W̃(H)Qs is the
equivalent channel of a modified OSTBC [10,12], and s′[n] =
QT

s s[n] is a rotated information vector with E
[
s′[n]s′T [n]

]
=

Λs.

3. PROPOSED APPROACHES

In this section, the problem of blind channel estimation from
second-order statistics (SOS) is solved by means of the cor-
relation and Kullback matching (CM and KM) criteria. Inter-
estingly, due to the orthogonality property (2), both criteria
lead to closed form solutions obtained by solving an eigen-
value (EV) problem. Due to the space limitation, here we
only consider the problem of estimating the channel up to a
real scale factor. However, as it will be shown in a forth-
coming paper [13], accurate estimates of the channel norm
and the noise variance can be easily obtained as well by the
proposed CM and KM criteria.

3.1 Correlation Matching (CM)

The correlation matching criterion for the estimate of the
channel Ĥ amounts to minimizing the Euclidian distance be-
tween the theoretical correlation matrix of the observations

Rỹ = W̃(Ĥ)ΛsW̃T (Ĥ)+
σ2

2
I, (3)

which depends on the parameter Ĥ, and its finite sample es-
timate1

R̂ỹ =
1
N

N−1

∑
n=0

ỹ[n]ỹT [n].

Therefore, the optimization problem is

argmin
Ĥ

∥∥∥∥R̂ỹ−W̃(Ĥ)ΛsW̃T (Ĥ)− σ2

2
I
∥∥∥∥2

,

which after some straightforward but tedious algebra can be
rewritten as

argmax
ˆ̃h

(
ˆ̃hT ΦCM ˆ̃h− σ2

2
‖ ˆ̃h‖2Tr(Λs)−

1
2
‖Λs‖2‖ ˆ̃h‖4

)
,

(4)
where

ΦCM =
M′

∑
k=1

ρ
CM
k D̃T

k R̂ỹD̃k, (5)

and the weights ρCM
k are directly given by the source eigen-

values, i.e., ρCM
k = λk. Thus, solving (4) w.r.t. ˆ̃h yields the

EV problem
ΦCM ˆ̃h = β

CM ˆ̃h,

where β CM = σ2

2 Tr(Λs) + ‖Λs‖2‖ ˆ̃h‖2 is the largest eigen-
value of ΦCM. Therefore, the CM estimate of the normalized
channel ˆ̃h/‖ ˆ̃h‖ is obtained as the eigenvector associated to
the largest eigenvalue of ΦCM, whereas the channel energy
‖ ˆ̃h‖ can be easily recovered from the eigenvalue β CM.

3.2 Kullback Matching (KM)

In this subsection, the blind channel estimation problem
is analyzed from an information geometric point of view.
Specifically, we propose to minimize the Kullback-Leibler
(KL) divergence between the empirical p̂(ỹ[n]) and theoreti-
cal p(ỹ[n]) pdfs of the observations

D(p̂|p) =
∫
ỹ[n]

p̂(ỹ[n]) log
p̂(ỹ[n])
p(ỹ[n])

dỹ[n],

which is closely related to the ML estimation of the parame-
ters [4, 5].

Assuming that the observations follow a zero-mean
Gaussian distribution, the KL divergence can be rewritten in
closed form as [6, 7]

D(p̂|p) =
1
2

Tr
(
R−1

ỹ R̂ỹ− I
)
− 1

2
log
∣∣det

(
R−1

ỹ R̂ỹ

)∣∣ .
Furthermore, although the Gaussian assumption is only
strictly correct in the asymptotic cases of σ2→∞ or M′→∞

independent sources, it has been recently proven [8] that,
under multilevel constellations, the above criterion provides
(asymptotically as σ2 → 0) the optimum second-order esti-
mator [7].

In the OSTBC case, the KM criterion can be easily sim-
plified. In particular, taking (2) and (3) into account, we ob-

1We assume that the MIMO channel remains constant during the trans-
mission of N OSTBC blocks.
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tain

R−1
ỹ =

(
σ2

2

)−1

I−
(

σ2

2

)−2

W̃(Ĥ)ΓKMW̃T (Ĥ),

where ΓKM = diag([ρKM
1 , . . . ,ρKM

M′ ]), and

ρ
KM
k =

λk

1+λk
‖Ĥ‖2
σ2/2

, k = 1, . . . ,M′. (6)

Thus, the problem of minimizing D(p̂|p) can be rewritten as

argmax
ˆ̃h

[(
σ2

2

)−2
ˆ̃hT ΦKM ˆ̃h−

M′

∑
k=1

log
(

λk‖ ˆ̃h‖2 +
σ2

2

)]
,

where

ΦKM =
M′

∑
k=1

ρ
KM
k D̃T

k R̂ỹD̃k, (7)

and analogously to the CM case, the solution ˆ̃h is obtained
from the EV problem

ΦKM ˆ̃h = β
KM ˆ̃h,

where β KM is the largest eigenvalue of ΦKM.

4. DISCUSSION AND RELATED TECHNIQUES

Here we present a brief analysis of the CM and KM esti-
mators, and compare them with the blind channel estimation
techniques in [14]. In particular, we must note the following:
• Unlike the CM technique, the KM estimate depends on

the ratio ‖H‖2/σ2, which is proportional to the instanta-
neous signal to noise ratio (SNRH), through the weights
given by (6). However, this value can be easily estimated
by the direct analysis of the signal and noise subspaces
of R̂ỹ.
• In the case of uncorrelated sources with the same power

(λk = λ ,∀k), both approaches are identical (ΦKM ∝

ΦCM), and equivalent to the relaxed blind ML decoder
[14], which amounts to minimizing

argmin
Ĥ,ŝ[n]

N−1

∑
n=0

∥∥ỹ[n]−W̃(Ĥ)ŝ[n]
∥∥2

. (8)

• In some practical cases, such as the Alamouti code and
most of the multiple-input single-output (MISO) sys-
tems, the relaxed blind ML decoder is affected by a
set of indeterminacies which preclude the unambiguous
blind channel recovery from second-order statistics (see
[11, 12] for a review of the identifiability conditions). In
order to solve this problem, in [14] the authors have pro-
posed a linear precoding of the information symbols s[n]
and a weighted version of the relaxed blind ML decoder,
whose solution is given by the principal eigenvector of

Φ =
M′

∑
k=1

ρkD̃T
k R̂ỹD̃k, (9)

where the weights ρ1 ≥ ρ2 ≥ . . . ≥ ρM′ are free param-

eters to be selected by the user. Therefore, the CM and
KM matrices (5) and (7) can be viewed as particular cases
of (9), which provide two different criteria for the selec-
tion of the weights and shed some light into the technique
proposed in [14].

• Taking (6) into account, the KM technique can be easily
interpreted:
– In the high noise regime (SNRH→ 0), ρKM

k = λk and
the KM criterion is equivalent to the CM, i.e., both
techniques try to extract the channel state information
from the prior knowledge of Λs.

– In the low noise regime (SNRH → ∞), the KM cri-
terion is equivalent to the relaxed blind ML decoder
(ρKM

k = σ2/(2‖H‖2)), i.e., the channel state infor-
mation is no longer extracted from the information
about the correlation matrices (which is not exact due
to the finite number of observations), but from the
congruence between the observations and the data
model (see eq. (8)).

5. SIMULATION RESULTS

In this section the performance of the proposed techniques
is illustrated by means of some numerical examples. In all
the cases the information symbols belong to a QPSK con-
stellation, and they are transmitted with unit power by chan-
nel use, which implies an instantaneous signal to noise ratio
SNRH = ‖H‖2

nT nRσ2 . The MIMO channel follows a Rayleigh
distribution, i.e., each element of H is a complex Gaussian
random variable with zero mean and unit variance. There-
fore, the average SNR is defined as SNR = 1/σ2.

The information symbols have been encoded with the
complex OSTBC Z3 proposed in [15, Chapter 3], whose pa-
rameters are nT = L = 8 and M = 4 (M′ = 8 and R = 1/2),
and which is defined by the following transmission matrix

S[n] =
[
S1[n] S2[n]
S3[n] −SH

1 [n]

]
,

where, omitting the temporal index [n],

S1 =
1
2

s1 + js2 s1 + js2 s1 + js2 s1 + js2
s1 + js2 −s1 + js2 s1 + js2 −s1 + js2
s1 + js2 s1 + js2 −s1 + js2 −s1 + js2
s1 + js2 −s1 + js2 −s1 + js2 s1 + js2

 ,

S2 =

 s3 + js4 0 s7 + js6 s5 + js8
0 s3 + js4 −s5 + js8 s7− js6

−s7 + js6 s5 + js8 s3− js4 0
−s5 + js8 −s7− js6 0 s3− js4

 ,

S3 =

 s3− js8 s5− js6 s7− js4 0
−s5− js6 s3 + js8 0 s7− js4
−s7− js4 0 s3 + js8 −s5 + js6

0 −s7− js4 s5 + js6 s3− js8

 .

This code was designed to provide better peak to average
power ratio (PAR) than that of the conventional designs for
nT = 8 [9]. For this code, it has been proven in [15, Chapter
4] that, in order to optimize the bit error rate (BER) under
QPSK constellations and Rayleigh channels, the source cor-
relation matrix should be

Λs = diag([3,3,1,1,1,1,1,1])/12,
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Figure 1: Analysis of the KM criterion. a) Evolution of the
ratio ρKM

3 /ρKM
1 with the instantaneous SNR. b) MSE in the

channel estimate for different ratios ρ3/ρ1, N = 50.

i.e., the energy of the first complex symbol is three times
higher than that of the three remaining symbols. As follows
from the CM and KM techniques, this suggests the use of
only two different weights, i.e., in all the cases (CM, KM,
and the technique in [14]) we select

ρ1 = ρ2 and ρ3 = . . . = ρ8.

Finally, we must note that the results in [11, 12] ensure the
blind identifiability of the channel by means of the relaxed
blind ML receiver in the case nR > 1. However, when nR =
1 the channel can not be unambiguously extracted without
exploiting the correlation properties of the sources.

5.1 First Example: Evolution of the KM Weights
In the first example the performance of the KM criterion is
analyzed in the case nR = 1. Fig. 1.a shows the evolution of
the ratio ρKM

3 /ρKM
1 with the instantaneous SNR (SNRH). As

can be seen, this value ranges from 1/3 (low SNRH), which
is equivalent to the CM approach, to 1 (high SNRH), which
matches the relaxed blind ML decoder. Additionally, Fig.
1.b represents the mean square error (MSE) in the channel
estimate as a function of the ratio ρ3/ρ1, where we can see
that the minimum MSE is obtained with the value ρKM

3 /ρKM
1

provided by the KM criterion.

5.2 Second Example: Non-Identifiable Case (nR = 1)
In the second example, the CM and KM techniques are eval-
uated in the case nR = 1. Fig. 2 shows the MSE in the chan-
nel estimate versus the average SNR for different numbers
N of available OSTBC blocks at the receiver side. As can
be seen, the relaxed blind ML decoder in [14] is not able
to recover the channel due to the indeterminacy problems
pointed out in [11, 12, 14], whereas the CM and KM tech-
niques are affected by a noise floor due to the finite number
of observations. However, unlike the CM criterion, which is
solely based on the previous knowledge of the source corre-
lation matrix, the KM approach also exploits the congruence
of the data model, which translates into a lower noise floor.
Furthermore, we must note that the performance of the KM
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Figure 2: Performance of the proposed techniques in the non-
identifiable case (nR = 1). Channel MSE vs. SNR.
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Figure 3: Performance of the proposed techniques in the non-
identifiable case (nR = 1). BER vs. SNR.

technique is practically identical in the cases of exact and es-
timated (from the instantaneous SNR) weights ρKM. Finally,
Fig. 3 shows the BER after decoding, where we can see that
the gap between the CM and KM criteria increases with the
SNR and decreases with the number of available blocks at the
receiver. Analogously to the previous case, this can be seen
as a direct consequence of the additional information pro-
vided by the data model, which is more significative when
the estimates of the correlation matrices are inaccurate (low
N), or when the data model is very reliable (high SNR).

5.3 Third Example: Identifiable Case (nR = 2)
In the final example, the previous experiment has been re-
peated for nR = 2. In this case, the channel can be unam-
biguously recovered by means of the relaxed blind ML de-
coder, which is equivalent to the KM approach in the high
SNR regime. As can be seen in Figs. 4 and 5, this translates
into the fact that, unlike the CM approach, the KM technique
is not affected by the noise floor, i.e, in the absence of noise
it exactly recovers the channel within a finite number of ob-
servations.
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Figure 4: Performance of the proposed techniques in the
identifiable case (nR = 2). Channel MSE vs. SNR.

6. CONCLUSIONS

In this paper the correlation (CM) and Kullback matching
(KM) criteria have been applied to the problem of blind
channel estimation under orthogonal space-time block coded
(OSTBC) transmissions. Both techniques are based on the
knowledge of the correlation properties of the sources and,
due to the special structure of the codes, their solutions can
be obtained in closed form. For both criteria, the channel es-
timation problem reduces to an eigenvalue problem, which is
formed from the correlation matrix of the observations mod-
ified by the code matrices and a set of weights. The perfor-
mance of the KM technique, whose weights depend on the
SNR, is in general better than that of the CM approach (fixed
weights). Finally, in the limiting cases of zero and infinite
noise variance, the KM method is equivalent to the CM and
the relaxed blind ML decoder, respectively.
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