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ABSTRACT

The paper improves the feedforward active noise control system
with online secondary path modeling developed by Akhtar, Abe,
and Kawamata by deriving optimal variable step-size parameters
for the adaptation algorithms of the secondary path modeling filter
and of the control filter. It is shown that the adaptation algorithms
equipped with the optimal variable step-size parameters improve
the convergence speed of the system and the estimation accuracy of
the optimal control filter.

1. INTRODUCTION

Active noise control (ANC) systems equipped with the Filtered-x
Least Mean Square (FX-LMS) adaptation algorithm cannot pre-
scind from the online estimation of the secondary path [1]. Two
different approaches can be adopted for the secondary path model-
ing. A first approach involves the injection of an auxiliary white
random noise in the ANC system and it uses a system identification
method to model the secondary path [2], [3], [4], [5], [6]. The sec-
ond approach estimates the secondary path directly from the output
of the control filter, without the injection of additional noise [1]. It
has been shown in [7] that the first approach is superior for conver-
gence speed of both the control filter and the secondary path model-
ing filter, for speed of response to modifications in the primary noise
and the secondary path, and for independence between the primary
noise attenuation and the online secondary path identification.

The injection of an auxiliary noise for estimating the secondary
path was first proposed in [2], where two adaptive filters were used
for adapting the control filter and for identifying the secondary path,
respectively. The system of [2] suffers the slow convergence of the
control filter and of the secondary path modeling filter and the low
estimation accuracy of the optimal values of these filters. Indeed,
with the injection of an auxiliary noise, the signal at the error mi-
crophone has two components: (1) the auxiliary noise filtered by
the secondary path, (2) the residual noise of the ANC system. In
the ANC system of [2], the first component disturbs the adaptation
of the control filter, while the second component disturbs the iden-
tification of the secondary path. In order to solve this problem the
use of a third adaptive filter was proposed in [3], [4], [5]. In [3]
and [4] the third adaptive filter is used to improve the convergence
performance and the estimation accuracy of the secondary path. In
fact, this adaptive filter acts as a noise suppressor that removes the
residual noise from the error signal of the secondary path model-
ing filter. The third adaptive filter is used for the same purpose also
in [5], but a cross-update strategy is employed for removing also
the auxiliary noise from the error signals of the control filter and
of the noise suppresser. More recently, improved convergence per-
formances were obtained with the ANC structure proposed in [6].
The ANC system of [6] uses again only two adaptive filters, one
for adapting the control filter and one for modeling the secondary
path, but an improved convergence speed of the control filter is ob-
tained by introducing the delay compensation scheme of [8], and
by removing the auxiliary noise from the error signal of the control
filter.

This paper improves the ANC system of [6] by deriving opti-
mal variable step-size parameters for the adaptation algorithms of
the secondary path modeling filter and of the control filter. The

transient and the steady-state behavior of the adaptation algorithms
used for the secondary path modeling filter and the control filter
can be tuned by acting on the step-size parameter of the adaptive
filter. By reducing the step-size parameter we can improve the es-
timation accuracy of the secondary path modeling filter or of the
control filter at steady state, but the convergence speed of the ANC
system reduces as well. A classical approach proposed in the liter-
ature to meet these conflicting requirements is that of the variable
step-size parameter methods. In these methods, the step-size para-
meter is varied in accordance with the state of the adaptive filter and
its distance from the steady-state condition. Different criteria have
been developed for estimating this distance and for controlling the
step-size parameter. In particular, by minimizing at each iteration
the mean-square-deviation of the adaptive filter, an optimal step-
size parameter was obtained for the Normalized Least Mean Square
(NLMS) algorithm in [9]. This optimal step-size parameter was
applied in [10] to the secondary path modeling filter in order to the-
oretically compare the ANC systems of [2], [3], and [5]. However,
in [10] the practical estimation of the optimal step-size parameter
was not discussed. An heuristically motivated variable step-size pa-
rameter was also proposed for the secondary path modeling filter
in [6]. In [6] small step-size parameter values are used in the early
phases of the adaptation, when the residual noise is large and it dis-
turbs considerably the secondary path modeling filter adaptation.
On the contrary, larger step-size parameter values are used when
the residual noise reduces. In this paper, using the theory of [9]
we derive optimal step-size parameters for both the secondary path
modeling filter and the control filter, and we discuss suitable prac-
tical estimators for all quantities involved in the computation of the
optimal step-size parameters. In contrast to the variable step-size
parameter of [6], we show that the optimal value of the step-size
parameter for the secondary path modeling filter has a decreasing
behavior with the convergence of the ANC system. We also show
that the adaptation algorithm equipped with the optimal variable
step-size parameters is capable to improve the convergence speed
of the ANC system and the estimation accuracy of the control filter.

The paper is organized as follows. Section 2 provides a brief
overview of the ANC system of [6] and of the variable step-size
there proposed. Section 3 derives the optimal step-size parameters
for the secondary path modeling filter and for the control filter and
discusses how these optimal step-size parameters can be practically
estimated. Section 4 provides simulation results for the ANC sys-
tem equipped with the optimal step-size parameters and compares
them with those of the system equipped with the variable step-size
parameter of [6].

Throughout the paper small boldface letters are used to denote
vectors, the symbol ∗ denotes the linear convolution, E[·] denotes
the mathematical expectation, and ‖·‖ denotes the Euclidean norm.

2. BACKGROUND THEORY

Figure 1 shows the block diagram of the ANC system with sec-
ondary path modeling proposed in [6]. The definition of all quanti-
ties in Figure 1, together with the definition of other quantities used
in the following of the paper can be found in Table 1.

The active noise control system of [6] exploits the delay com-
pensation scheme of [8] in order to improve the convergence prop-



Table 1: Quantities used for the ANC system description.

Quantity Description
p(n) impulse response of the primary path;
p(n) vector collecting the samples of p(n);
s(n) impulse response of the secondary path;
s(n) vector collecting the samples of s(n);
ŝ(n) = [s0(n),s1(n), . . . ,sM−1(n)]T coefficient vector of the secondary path modeling filter, an FIR filter of memory

length M;
w(n) = [w0(n),w1(n), . . . ,wN−1(n)]T coefficient vector of the noise control filter, an FIR filter of memory length N;
x(n) reference signal;

xN(n) = [x(n),x(n−1), . . . ,x(n−N +1)]T data vector with the last N samples of x(n);
y(n) = w

T (n)xN(n) output of the actual noise control filter;
ν(n) internally generated zero mean, unit variance, white Gaussian noise;
G(n) amplification factor of the white Gaussian noise;
v(n) = G(n)ν(n) auxiliary noise injected in the system;
d(n) = p(n)∗x(n) primary disturbance signal;
y′(n) = s(n)∗y(n) canceling signal;
v′(n) = s(n)∗v(n) modeling signal;
e(n) = d(n)−y′(n)+v′(n) error microphone signal;

v(n) = [v(n),v(n−1), . . . ,v(n−M +1)]T data vector with the last M samples of v(n);
v̂′(n) = ŝ

T (n)v(n) output of the adaptive secondary path modeling filter;
f (n) = e(n)− v̂′(n) estimation error of the secondary path;

y(n) = [y(n),y(n−1), . . . ,y(n−M +1)]T data vector with the last M samples of y(n);
ŷ′(n) = ŝ

T (n)y(n) internal estimate of the canceling signal;

d̂(n) = f (n)+y′(n) internal estimate of the primary disturbance signal;

xM(n) = [x(n),x(n−1), . . . ,x(n−M +1)]T data vector with the last M samples of x(n);
x̂′(n) = ŝ

T (n)xM(n) reference signal filtered ŝ(n);
x̂
′(n) = [x̂′(n), x̂′(n−1), . . . , x̂′(n−N +1)]T data vector with the last N samples of x̂′(n);

d̂′(n) = w
T (n)x̂′(n) output of the dummy adaptive noise control filter;

g(n) = d̂(n)− d̂′(n) estimation error of the noise control filter.
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Figure 1: The ANC system with secondary path modeling of
Akhtar, Abe, and Kawamata.

erties of the noise control filter and to avoid the use of a noise sup-
presser in the estimation of the secondary path. The adaptation
algorithm for the noise control filter was called in [8] “modified
filtered-x algorithm” and it adapts w(n) with the following rule:

w(n+1) = w(n)+µwg(n)x̂′(n), (1)

where µw is a fixed step-size parameter.
The secondary path is estimated from the zero mean white

Gaussian auxiliary noise v(n) injected in the secondary path. In [6]
the secondary path modeling filter ŝ(n) is adapted with a variable
step-size LMS algorithm with the following adaptation rule:

ŝ(n+1) = ŝ(n)+µs(n) f (n)v(n), (2)

where µs(n) is the variable step-size parameter. This parameter is
varied between a minimum value µsmin

and a maximum value µsmax

(with µsmin
and µsmax

determined experimentally) on the basis of the
ratio ρ(n) between the power of the error signal f (n) and the power
of the error microphone signal e(n),

ρ(n) =
Pf (n)

Pe(n)
, (3)

with
Pf (n) = λPf (n−1)+(1−λ ) f 2(n), (4)

Pe(n) = λPe(n−1)+(1−λ )e2(n), (5)

and λ a forgetting factor close to 1. The variable step-size parameter
µs(n) is computed as follows:

µs(n) = ρ(n)µsmin
+(1−ρ(n))µsmax

. (6)

The choice of this variable step-size parameter was heuristically
motivated in [6] with the fact that in the early phases of adaptation
of the ANC system (when y′(n) is close to zero) the convergence of
the secondary path model is degraded by the large disturbance at the
error microphone. Thus, a small step-size µs(n) should be chosen.
With the convergence of the active noise control filter the distur-
bance reduces and a larger step-size can be used in the secondary
path model adaptation. It is shown in [6] that ρ(n) ' 1 in the early
phases of the ANC system adaptation, while ρ(n) ' 0 when the
ANC system is converged.

In [6] the auxiliary noise power was kept constant (G(n) = G,
with G constant) and it was chosen by compromising between the
contrasting needs of fast convergence of the secondary path (which
benefits from a large auxiliary noise power) and of low steady state
residual noise (which requires a low auxiliary noise power). A sche-
duling strategy for the auxiliary noise was later introduced in [11].
This scheduling strategy provides a large auxiliary noise power in
the early phases of adaptation of the ANC system, and a much lower
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Figure 2: The ANC system modified with the introduction of the
delay coefficient technique.

power at steady state. In particular, the auxiliary noise power is var-

ied between a maximum value σ2
vmax

and a minimum value σ2
vmin

(with σ2
vmax

and σ2
vmin

determined experimentally) by varying the

gain G(n) with the following rule:

G(n) =
√

ρ(n)σ2
vmax

+(1−ρ(n))σ2
vmin

, (7)

where ρ(n) is defined in (3).
A self tuning power scheduling for the auxiliary noise was pro-

posed by the authors of this paper in [12]. This auxiliary noise
power scheduling keeps approximately constant the ratio R between
the power of the residual noise d(n)−y′(n) and the power of auxil-
iary noise at the error microphone v′(n). It sets

G(n) =

√

Pe(n)

(R+1)Ps(n)
(8)

where Pe(n) is an estimate of the power of e(n), given by (5), and

Ps(n) is an exponentially smoothed estimate of ŝ
T (n)ŝ(n),

Ps(n) = λPs(n−1)+(1−λ )ŝT (n)ŝ(n). (9)

3. OPTIMAL VARIABLE STEP-SIZE PARAMETERS

Ideal optimal variable step-size parameters
In order to derive the optimal variable step-size parameters we

replace the adaptation rules of (1) and (2) with the following NLMS
adaptations

w(n+1) = w(n)+µw(n)
g(n)x̂′(n)

x̂′T (n)x̂′(n)
, (10)

ŝ(n+1) = ŝ(n)+µs(n)
f (n)v(n)

vT (n)v(n)
, (11)

where µw(n) and µs(n) are variable step-size parameters.
Let wo(n) be the minimum-mean-square (MMS) solution of

the ANC problem of memory length N [1], and s(n) the M-sample
impulse response of the secondary path. When the ANC system
is convergent for n → +∞, w(n) → wo(n) and ŝ(n) → s(n). At
time n the errors in the noise control filter and in the secondary path
modeling filter, respectively, are given by

m(n) = wo(n)−w(n), (12)

r(n) = s(n)− ŝ(n). (13)

By following the approach of [9], it can be proved that the optimal
step-size parameters that maximize the convergence speed of the
ANC system are given by the following equations:

µw(n) =
E[g(n)mT (n)x̂′(n)]

E[g2(n)]
, (14)

µs(n) =
E[ f (n)rT (n)v(n)]

E[ f 2(n)]
. (15)

Since f (n) = e(n)− v̂′(n) = d(n)−y′(n)+r
T (n)v(n) and v(n)

is uncorrelated with x(n) and d(n), (15) can be rewritten as follows:

µs(n) =
E[(rT (n)v(n))2]

E[ f 2(n)]
. (16)

Moreover, by assuming r(n) and v(n) to be independent, (16) can
also be written as

µs(n) =
E[(rT (n)r(n)vT (n)v(n))/M]

E[ f 2(n)]
. (17)

Practical estimation of the optimal variable step-size parameters

In (14) and (17), the expectations E[g2(n)] and E[ f 2(n)] can be
evaluated with exponentially smoothed estimates of the power of

g(n) and of f (n). E[g2(n)] can be evaluated as follows:

Pg(n) = λPg(n−1)+(1−λ )g2 (n), (18)

and E[ f 2(n)] with (4).
Let us first discuss the evaluation of (17). For its evaluation we

have to estimate the Euclidean norm of the system error r(n), i.e.,

the system distance ‖r(n)‖2 = ‖s(n)− ŝ(n)‖2 . An accurate esti-
mate of r(n) can be obtained with the delay coefficient technique
[9]. The delay coefficient technique derives from the observation
that the system error tends to have a uniform distribution on its co-
efficients [9]. By delaying by D samples the internally generated
signal v(n) sent to the secondary path, as shown in Figure 2, the
steady-state value of the first D coefficients of the secondary path
modeling filter becomes 0, and the instantaneous value of the first
D delay coefficients can be used for estimating the system distance.

For applying the delay coefficient technique we consider from
now on a secondary path modeling filter ŝ(n) of memory length
M + D. The collection of the first D coefficients of this filter is
indicated with ŝ0(n) and it is used for estimating the system distance
at time n as follows [9]:

‖r(n)‖2 '
M

D
ŝ

T
0 (n)ŝ0(n) (19)

The collection of the last M coefficients of ŝ(n) is indicated with
ŝ1(n) and it is the true estimate of the secondary path impulse re-
sponse. Thus, as shown in Figure 2, ŝ1(n) is used for computing
the delay compensation signal ŷ′(n) and the filtered reference sig-
nal x̂′(n). ŝ0(n) and ŝ1(n) are adapted with the NLMS algorithm as
follows:

ŝ0(n+1) = ŝ0(n)+µs(n)
f (n)v0(n)

vT (n)v(n)
, (20)

ŝ1(n+1) = ŝ1(n)+µs(n)
f (n)v1(n)

vT (n)v(n)
, (21)

where v(n) = [v(n),v(n − 1), . . . ,v(n − D − M + 1)]T , v0(n) =
[v(n),v(n − 1), . . . ,v(n − D + 1)]T , v1(n) = [v(n − D),v(n − D −
1), . . . ,v(n−D−M + 1)]T . In (20) and (21) the optimal variable
step-size of (17) is approximated as follows:

µs(n) =

{

N̂S(n)
Pf (n)

when
N̂S(n)
Pf (n)

> µsmin

µsmin
otherwise

(22)

where N̂S(n) is an exponentially smoothed estimate of

E[(rT (n)r(n)vT (n)v(n))/M] obtained by using the delay
coefficient technique,

N̂S(n) = λ N̂S(n−1)+(1−λ )(ŝT
0 (n)ŝ0(n)vT (n)v(n))/D, (23)
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Figure 3: Performance comparison between the proposed method and the Akhtar’s method with a sudden change in the acoustic paths.

and µsmin
is the minimum value of the step-size parameter, used for

avoiding the adaptation freezing in case of a sudden change of the
secondary path impulse response [9].

The estimation of the numerator of µw(n) in (14) is more diffi-
cult. We cannot apply the delay coefficient technique for estimating

the system distance ‖m(n)‖2. Indeed, the control filter acts as a
predictor of the input signals [13] and, even if we introduce a de-
lay in the error microphone signal, the steady-state value of the first
coefficients is never zero. A reasonable heuristic estimate of the
system error m(n) is given by:

m̂(n) = λ̂m̂(n−1)+(1− λ̂ )
g(n)x̂′(n)

x̂′T (n)x̂′(n)
, (24)

i.e., the exponentially smoothed value of w(n + 1)−w(n) when
µw(n) = 1. The validity of this choice has been confirmed by the

results of extensive simulations. The forgetting factor λ̂ in our ex-
periments was usually taken much lower than the forgetting factor

λ used for Pf (n), Pg(n) and N̂s(n), and it was chosen in the range

[0.6,0.9]. By estimating m(n) with (24), we can approximate the
optimal step-size µw(n) as follows:

µw(n) =
N̂w(n)

Pg(n)
, (25)

where N̂w(n) is the exponentially smoothed estimate of

E[g(n)mT (n)x̂′(n)] given by:

N̂w(n) = λ N̂w(n−1)+(1−λ )g(n)m̂T (n)x̂′(n). (26)

It should be noted that no good result can be obtained with the ANC
system equipped with the estimated optimal step-size parameters
of (22) and (25) without a sufficiently high auxiliary noise during
the initial convergence of the ANC system. Thus, in order to not
penalize the residual noise at steady state the auxiliary noise power
scheduling of (8) has been used in all experimental results.

4. EXPERIMENTAL RESULTS

In this section we provide some experimental results for the ANC
system equipped with the optimal step-size parameters of (22) and
(25) using the auxiliary noise power scheduling of (8). The resulting
system performances are compared with those of the ANC system
equipped with the variable step-size parameter of (6) and the auxil-
iary noise power scheduling of (7). In the authors opinion, the last
system is the most performant ANC system presently available in
the literature.

We consider the same experimental conditions of the second
experiment of [6]. The sampling frequency is 2 kHz. The reference
signal x(n) is a multi-tonal signal with frequencies 100 Hz, 200 Hz,

300 Hz and 400 Hz and variance 2.0. The signal is corrupted with
a zero-mean white Gaussian noise till a 30 dB SNR. The control
filter and the secondary path modeling filter have memory lengths
N = 32 and M = 16, respectively.

We consider two set of experiments. In the first set of exper-
iments we study the behavior of the ANC system in presence of
a strong variation in the impulse response of the primary and sec-
ondary acoustic paths. In particular, in the first 30000 simulation
samples we assume to have impulse responses of the primary path
p1(n) and of the secondary path s1(n) which have been obtained by
truncating the impulse responses reported in the companion disk of
[1] to L = 48 and M = 16 taps, respectively. In the second 30000
simulation samples we assume to have impulse response of the pri-
mary path p2(n) and of the secondary path s2(n) given by:

p2(n) = [
2

3
p1(0),

2

3
p1(1)+

1

3
p1(0), . . . ,

2

3
p1(L)+

1

3
p1(L−1)]T ,

s2(n) = [
2

3
s1(0),

2

3
s1(1)+

1

3
s1(0), . . . ,

2

3
s1(M)+

1

3
s1(M−1)]T .

In our experimental set-up we assume that the secondary path
cannot be modelled off-line by switching off the primary noise
source, but it must be modelled online with the noise source x(n)
active. Thus, we consider two phases of operation of the ANC sys-
tem. In the first phase we keep inactive the control filter and we
adapt the secondary path modeling filter to obtain a first estimate
of the secondary path. In the second phase, we operate the ANC
system by adapting both the secondary path modeling filter and the
control filter. The duration of the first phase was tuned to the mini-
mum duration that guarantees a stable operation of the ANC system.

The performance comparison of the ANC systems is done
on the basis of different performance measures: the power of

the error microphone signal (E[e2(n)]), the power of the residual

noise (E[(d(n)− y′(n))2]), the relative modeling error of the sec-

ondary path, defined as ∆S(n) = 10log10

[

‖s(n)−ŝ(n)‖2

‖s(n)‖2

]

, and the

relative modeling error of the control filter, defined as ∆W (n) =

10log10

[

‖wo(n)−w(n)‖2

‖wo(n)‖2

]

, with wo(n) the MMS optimal control fil-

ter [1], which has been a priori determined.
In the ANC system equipped with the optimal step-size para-

meters, the parameters have been set as follows: number of delay
coefficients D = 8, the minimum step-size parameter for µs(n) set

to 0.005, λ = 0.99, λ̂ = 0.8, and desired ratio R = 1. Thus, in every
condition we enforce the power of v′(n), to be equal to the power of
d(n)− y′(n). In the ANC system equipped with the variable step-
size parameter of (6), the parameter settings are the same of [11],

i.e., µsmin
= 10−3, µsmax

= 10−2, µw = 10−5 , and λ = 0.99. More-

over, in (7) we choose σ2
vmax

= 4 and σ2
vmin

= 0. With this choice,
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Figure 4: Performance comparison between the proposed method and the Akhtar’s method with a slow change in the acoustic paths.

during the initialization phase the auxiliary noise power is almost
equal to that obtained with the power scheduling of (8).

Figures 3 provides the performance comparison of the two sys-
tems in case of a strong variation of the impulse response of the
acoustic paths. In these figures, plot (a) diagrams the system dis-
tance ∆S(n), plot (b) the system distance ∆W (n), plot (c) the evo-
lution of the power of the auxiliary noise at the error microphone
v′(n), plot (d) the evolution of the step-size µs(n), plot (e) the evo-
lution of the step-size µw(n), plot (f) the evolution of the power of
the error microphone signal e(n). The plots have been obtained with
ensemble averages over 100 runs of the system.

From there figures in the first 30000 samples we notice a strong
performance improvement with the proposed method in the conver-
gence speed of the algorithm, in the estimation accuracy of the op-
timal controller, and in the power of error microphone signal. The
lower accuracy in the estimation of the secondary path modeling
filter is caused by the lower power of the auxiliary noise with the
proposed power scheduling compared with that of [11]. However
the estimation accuracy of s(n) is still very good and it does not af-
fect the estimation of the optimal controller. After the first 30000
samples, because of the higher power of auxiliary noise, the sys-
tem equipped with the variable step-size parameter of (6) responds
more rapidly to the variation of the secondary path. Nevertheless,
the system equipped with the optimal step-size parameters still pro-
vides a better accuracy in the estimation of the optimal controller
and a much lower power of the error microphone signal e(n).

In the second set of experiments we study the behavior of the
ANC system in presence of a slow variation in the impulse response
of the primary and secondary acoustic paths. In particular we as-
sume that the impulse responses of the primary and secondary paths
evolve with a linear law from p1(n) to p2(n) and from s1(n) to
s2(n), respectively. Figure 4 provides the performance comparison
of the two systems. The plots are the same of the previous exper-
iment and they have been obtained with ensemble averages over
100 runs. Despite the variation in the primary and secondary paths,
in the system equipped with the optimal step-size parameters the
control filter converges rapidly to the optimal control filter. On the
contrary, the system equipped with the variable step-size parameter
of (6) has more difficulties in tracking the variation of the optimal
controller.

Similar experimental results have been obtained also with tonal
and broadband input noises.

5. CONCLUSION

In this paper we have discussed the choice of optimal step-size para-
meters for the adaptation algorithms of the noise control filter and of
the secondary path modeling filter of the ANC system described in

[6]. It should be noted that with our method, the number of parame-
ters to be tuned is strongly reduced in comparison to other similar
solutions proposed in the literature [2], [3], [4], [5], [6].
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