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ABSTRACT

We introduce a criterion for blindly extracting a small
subset of most interesting sources in instantaneous mixtures,
based on second order statistics. The extracted sources are
those for which the time varying spectral density varies the
most. The gradient and an approximation to the Hessian of
the criterion are derived. Based on the block diagonal form
of the approximate Hessian, an algorithm of relaxation type
is developed. A simulation example is provided showing the
good performance of the algorithm.

1. INTRODUCTION

We consider the simplest and most widely considered blind
source separation (BSS) model: X(t) = AS(t) where X(t)
and S(t) are vectors of a same dimension K, representing the
observations and the sources (at time t) and A is an invert-
ible matrix. The goal is to extract the sources from their mix-
tures, without relying on any specific knowledge about them
other than their independence. Several good algorithms have
been proposed for this task [1, 2]. However, in many appli-
cations (biomedical for ex.), the number K of mixtures can
be very large and therefore one may be interested in extract-
ing only a small number of most interesting sources. In this
work, we focus on methods based on second order statis-
tics, which rely on the spectral diversity or time diversity or
more generally time-frequency energy distribution diversity,
of the sources. Thus by most interesting sources we mean
those for which the spectral density (or time-frequency en-
ergy distribution) varies the most over the frequency axis (or
the time-frequency plane). When there are many sources,
onemay expect that many of them are nearly stationary white
noises: their spectral densities (or time-frequency distribu-
tions) are nearly flat. In this case, second order algorithms
would have difficulties to extract the sources (in fact they
fail completely if there are more than one stationary white
noise sources). Extracting them just wastes computational
resources and may even leads to wrong interpretation of the
analysis. In fact, in BSS problem with very large number
of mixtures, one routinely discards most of the extracted
sources and only retains some of them.

In this paper we shall develop an algorithm for extract-
ing only p < K sources, based on second order statistics.
Note that methods based on the instantaneous distribution of
sources, in particular the mutual information, has been con-
sidered in [5]. Such methods exploit the non Gaussianity of
the sources, while second order methods exploit their spec-
tral and/or time diversity. The later methods basically work

by jointly diagonalizing a set of (lagged) covariance or spec-
tral matrices. Our method is based on interspectral matrices
or more generally time varying interspectral matrices, at dif-
ferent frequencies and time points, since we use a criterion
similar to the one in [4]. Note that this criterion has an inter-
pretation as a sparsity interpretation: it extracts sources for
which the time-frequency energy distribution is most con-
centrated, or most variable, in the time-frequency plane.

2. THE CRITERION

Since the observations are linear mixtures of sources, one
would extract the sources by a linear operation, as the com-
ponents Yi(t) of Y(t) = BX(t) where B is a p×K matrix.
The process {Yi(t)} is random, possibly non stationary, with
a time varying spectral density denoted by fYi(t,ω). These
densities can be estimated by one of the two methods de-
scribed in [4]. Actually, one first estimates the time varying
spectral-interspectral matrix fX(t,ω) of the vector process
{X(t)}, then deduces that of fYi(t,ω) as the i-th diagonal

element of B f̂X(t,ω)BT, f̂X(t,ω) denoting the estimator

of fX(t,ω) and T the transpose. Other estimation methods

can be used provided that f̂X(t,ω) is positive definite so that
f̂Yi(t,ω) ≥ 0 for any value of B. In practice f̂Yi(t,ω) will
not estimate the time varying spectral density at precisely
the time-frequency point (t,ω), but only the average density
over a cell centered at this point. Therefore we shall work
with a finite time-frequency grid {tn,ωm : n = 1, . . . ,N, m =
1, . . . ,M} for which the corresponding cells are more or less
disjoint. Thus our work covers two extreme cases: (i) N = 1
in which fYi(t1,ωm) represents the spectral density of {Yi(t)}
at the frequency ωm (averaged over the observation period),
and (ii) M = 1 in which fYi(tn,ω1) represents the local vari-
ance of {Yi(t)} at time tn.

For simplicity of notation, we denote by G the set of all
time-frequency grid points and write fX(g) for the time vary-

ing interspectral matrix at g ∈ G (and similarly for f̂X(g)).
Further, for any function h on G , 〈h〉 denotes its average
over G . We would like to find a p× K matrix B such
that the time varying spectral density fYi of each compo-
nent process {Yi(t)} of the vector process {Y(t)} varies the
most with respect to g ∈ G . As a measure of variability
of the function fYi , we take log〈 fYi〉 − 〈log fYi〉, the loga-
rithm of the ratio of arithmetic and geometric averages of the
fYi . However maximizing ∑

p
i=1[log〈 fYi〉 − 〈log fYi〉] would

lead to extracting p times a same sources, the one which
maximizes this measure of variability. Thus we need to
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subtract a term to enforce the least the global correlation
between the extracted sources. Since the covariance ma-
trix of the observation vector is C = 〈 fX〉, that of the ex-

tracted source vectors is BCB
T. Therefore a measure of

the global correlation of the extracted source can be taken
as logdetdiag(BCB

T)− logdet(BCB
T), where diag is the

operator which builds a diagonal matrix from its diagonal
elements. The last expression is known, by the Hadamard
inequality [6], to be non negative and can be zero if and only
if the matrix BCB

T is diagonal, meaning that the extracted
sources are uncorrelated. Thus, noting that fYi is the i-th di-

agonal element of B fXB
T hence 〈 fYi〉 is the i-th diagonal

element of BCB
T, we are led to the criterion:

C(B) = 〈logdetdiag(B fXB
T)〉− logdet(BCB

T) (1)

to be minimized with respect to B. This is the theoretical
criterion. In practice, the matrices fX(g) would be replaced

by their estimates f̂X(g)
In this paper we focus on the case of real signals so that

B is real (although our method can be easily extended to
the complex case, in which B

T should be replaced by the
transpose conjugate of B). Then diag(B fXB

T) is the same
as diag(Bℜ fXB

T), ℜ denoting the real part. Thus one may
in (1) replace fX by ℜ fX. This doesn’t change the matrix
C = 〈 fX〉 since this matrix should be real as it represents
the covariance matrix of real signals. (This is the case by
choosing G such for any g ∈ G there is a g∗ in G (which can
be the same as g) such that fX(g∗) is the conjugate of fX(g)).

3. GRADIENT AND HESSIAN OF THE CRITERION

Since our criterionC defined in (1) is function of matrix argu-
ment, instead of computing its gradient and Hessian directly,
it is simpler to perform a Taylor expansion up to second or-
der. Thus let dB be a small increment of B, we shall com-
pute the corresponding increment of C up to second order.
The corresponding increment of fY = B fXB

T is dB fXY +
fYXdBT+dB fXdB

T where fXY = fXB
T is the time vary-

ing cross spectral density between the processes {X(t)} and
{Y(t)} and similarly for fYX. The diagonal of the matrix

increment of fY equals that of 2dB fXY +dB fXdB
T, since

fYX is the transpose conjugated of fXY . Thus, using the fact

that log(a+ ε) = loga+ ε/a− 1
2
(ε/a)2 + . . ., the increment

of 〈logdetdiag( fY)〉 corresponding to the increment dB of
B equals
〈

2tr[dB fXYdiag( fY)−1]+ tr[dB fXdBTdiag( fY)−1]

−2tr{[diag(dB fXY)diag( fY)−1]2}
〉

+ . . . (2)

where tr denotes the trace.
On the other hand, the increment of logdet(BCB

T) cor-
responding to the increment dB ofB is logdet(I+∆) where
∆ = (dBCB

T + BCdBT + dBCdBT)(BCB
T)−1. Fur-

ther, let δ1,δ2, . . . be the eigenvalues of ∆, then logdet(I+
∆) = ∑i log(1 + δi) = ∑i(δi −

1
2
δ 2
i + . . .) = tr(∆) −

1
2
tr(∆2) + . . . Therefore, the increment of logdet(BCB

T)
corresponding to the increment dB of B equals

2tr[dBCB
T(BCB

T)−1]+ tr[dBCdBT(BCB
T)−1−

dBCB
T(BCB

T)−1(BCdBT +dBCB
T)(BCB

T)−1]

+ . . . (3)

since tr(ML) = tr(LM) = tr(MT
L
T) and C is symmetric

3.1 Gradient of the criterion

The gradient of the criterion is the matrix Ċ(B) in the first

order expansion C(B + dB) = C(B) + tr[Ċ(B)dBT] + · · ·
Looking at the first order term in dB in (2) and (3), one gets:

Ċ(B) = 2〈diag( fY)−1 fYX〉−2(BCB
T)−1

BC (4)

3.2 Hessian of the criterion

The formula for the Hessian, although can be obtained, is too
complex and therefore we shall make some approximations.
We suppose that the matrix B approximatively extract the
sources so that there is a complementary matrix B

c of size
(K− p)×K extracting mixtures of other sources, such that

[

B

B
c

]

fX(g)[BT
B

cT] ≈

[

diag[ fY(g)] 0

0 B
c fX(g)BcT

]

for all g ∈ G . The matrix B
c can be determined uniquely

up to pre-multiplication by an invertible matrix, by setting
〈Bc fXB

T〉 = B
c
CB

T to exactly 0. Thus

fX ≈

[

B

B
c

]−1 [

diag( fY) 0

0 B
c fXB

cT

]

[

B
T

B
cT

]−1
,

(5)
the approximation being unchanged when B

c is pre-
multiplied by an invertible matrix.

Equality B
c
CB = 0 yields that

C =

[

B

B
c

]−1 [

BCB
T 0

0 B
c
CB

cT

]

[

B
T

B
cT

]−1
. (6)

Therefore dBC = [E BCB
T E c

B
c
CB

cT][BT
B

cT]−1

where we have put

dB

[

B

B
c

]−1

= [E E c ] (E square matrix).

Hence, the second order terms in (3) can be written as

tr[E c
B

c
CB

cT
E
T(BCB

T)−1−E
2].

On the other hand, the approximation (5) for fX yields

dB fXdBT ≈ E diag( fY)E T +E
c
B

c fXB
cT

E
cT

and dB fXY ≈ E diag( fY). Further, BCB
T = 〈 fY〉 may be

approximated by diag(〈 fY〉). Finally, by (2) and (3), the sec-
ond order terms in the Taylor expansion of C(B+ dB) are
approximately

∑∑
1≤i6= j≤K

(

E
2
i j

〈 fYj

fYi

〉

+Ei jE ji

)

+

K

∑
i=1

E
c
i·

[〈

B
c fXB

cT

fYi

〉

−
B

c
CB

cT

〈 fYi〉

]

E
cT
i·

where fYi denotes i-th diagonal element of fY and Ei j and E c
i·

denote the general element of E and the i-th row of E c.
The above results show that it is more convenient to work

with the relative increments E ,E c instead of dB. In term of
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these increments the approximate Hessian is block diagonal
with 2×2 blocks

2

[

〈 fYj/ fYi〉 1

1 〈 fYi/ fYj 〉

]

, 1≤ i < j ≤ K,

corresponding to Ei j,E ji, and (K− p)× (K− p) blocks

2(〈Bc fXB
cT/ fYi〉−B

c
CB

cT/〈 fYi〉), i = 1, . . . ,K,

corresponding to the vector E c
i· . Note that the row and col-

umn of the Hessian matrix corresponding to the increment
Eii is identically zero, which is simply the consequence of
the fact that the criterion is scale invariant: it is unchanged
when one multiplies the i-th row of its argument by Eii.

3.3 Discussion

One may use the above formulas for the gradient and the ap-
proximate Hessian to implement a quasi Newton algorithm.
However, there is a major difficulty: the approximateHessian
can be non positive definite, which breaks the algorithm. In
fact we can find a counter example (not shown here for lack
of space) in which the (theoretical) criterion admits a sad-
dle point and the approximate Hessian is exact at this point
and is not positive definite. Thus quasi Newton algorithm
will not be used. However, The above formula for the Hes-
sian has an interesting consequence: one can work with the
pairs of increments (Ei j,E ji) and the increment vectors E c

i·
independently. This suggests a form of relaxation algorithm
described below.

4. THE RELAXATION ALGORITHM

The idea behind the relaxation method is to minimize the
criterion with respect to a subset of variables, keeping the
other fixed, then repeat the procedure with another subset
until all variables have been covered, then start all over again
until convergence. From the result of previous section, a
natural candidate of these subsets of variables are the pairs
(Ei j,E ji),1≤ i< j≤K and the vectors E c

i· , i= 1, . . . ,K. This
leads to two kinds of update.

4.1 Intra-source update

This corresponds to keeping E c = 0, hence the transforma-
tion B → B + dB = (I+ E )B would simply (try to) only
demix the extracted sources by adding to each of them a
linear combination of the others. The matrices fY(g) =
B fX(g)BT are transformed into (I+E ) fY(g)(I+E )T, and
thus the criterion, in term of E , can be written as

〈logdetdiag[(I+E ) fY(I+E )T]〉−2logdet |I+E |+ const.

This is the same as the criterion in [3] for jointly approxi-
mately diagonalizing several matrices. Thus, one may apply

the same method as in this paper, which leads to taking1

[

Ei j

Ei j

]

=
−2

1+
√

1−4hi jh ji

[

hi j
h ji

]

where
[

hi j
h̄ ji

]

=

[

〈 fYj/ fYi〉 1

1 〈 fYi/ fYj 〉

]−1 [

〈 fYiYj/ fYi〉

〈 fYjYi/ fYj 〉

]

,

1This formula is the simplified version of the one in [3] as the hi j are real

fYiYj being the i j element of fY. Here fY is computed from

the current value ofB and once the Ei j,Ei j has been obtained
as above, B is updated by pre-multiplication with I + E

where E has only Ei j,Ei j as non zero elements at the i j and
ji place. The above transformations will be done for all pairs
(i, j), 1< i< j <K, which constitute an intra-source update.

4.2 Extra-source update

In this update, each i-th row of B will be successively added
a vector of the form E c

i·B
c, which corresponds to adding

a linear combination of observed mixtures to the extracted
sources. One may take as E c

i· the one provided by the quasi-
Newton algorithm, but then we could encounter the problem
of non positivity of the Hessian and this choice does not even
ensure that the criterion is decreased. Our idea is to take E c

i·
of the form αiei and adjust the coefficient αi so that the crite-
rion is (almost) maximally decreased. The choice of ei will
be discussed later.

Let the i-th row of B be added αieiB
c = αidi and the

other rows are kept fixed. Then 〈logdetdiag( fY)〉 is added

〈

log
(

1+
2αidi fXYi + α2

i di fXd
T
i

fYi

)〉

where fXYi is the i-th column of fXY . On the other hand,

the matrix BCB
T has their elements unchanged except

the i-th diagonal element, which is added α2
i diCd

T
i (since

diCB
T = eiB

c
CB

T = 0). Thus logdet(BCB
T) is changed

by log(1+ α2
i diCd

T
i /σ2

i ) where σ2
i denotes the inverse of

the i-th diagonal element of (BCB
T)−1. It follows that the

criterion is changed by

〈

log
(

1+
2αidi fXYi + α2

i di fXd
T
i

fYi

)〉

− log
(

1+α2
i

dCd
T

σ2
i

)

By the Jensen inequality, the above expression is
bounded by

log
(1+2αidi〈 fXYi/ fYi〉+ α2

i di〈 fX/ fYi〉d
T
i

1+ α2
i diCdT

i /σ2
i

)

. (7)

Equality is achieved if the function (2αidi fXYi +

α2
i di fXd

T
i )/ fYi is constant. Further, if αidi is small so

that this function is small, then (7) is a good approximation
to the actual increment of the criterion (corresponding to the
increment αidi of the i-th row of B). Therefore, instead of
minimizing the increment of the criterion, which is difficult,
we shall minimize (7) instead. We note that if the attained
minimum is negative, then the criterion must be decreased.

The derivative of the fraction in (7) with respect to αi can
be found to be the fraction

2
gi+hiαi−giα

2
i diCd

T
i /σ2

i

(1+ α2
i diCdT

i /σ2
i )2

,

where we have put

gi = di

〈 fXYi

fYi

〉

, hi = di

(〈 fX

fYi

〉

−
C

σ2
i

)

d
T
i . (8)

The numerator of the above fraction is a quadratic polyno-
mial in αi, which admits two real roots:

hi±
√

h2i +4g2i diCdT
i /σ2

i

2gidiCdT
i /σ2

i
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The leading coefficient of this polynomial has the opposite
sign as gi. Thus if gi < 0, this polynomial is positive be-
fore the smaller root, negative between the roots and positive
again after the larger root. Since (7) has derivative of the
same sign as this polynomial, it admits a global minimum
at the larger root. If gi > 0, this polynomial is negative be-
fore the smaller root, positive between the roots and negative
again after the larger root, hence (7) admits a global min-
imum at the smaller root. In both case, one sees that (7)
admits a global minimum at

α∗
i =

(

hi−
√

h2i +4g2i diCdT
i /σ2

i

)/

(2gidiCd
T
i /σ2

i )

= −2gi

/(

hi +
√

h2i +4g2i diCdT
i /σ2

i

)

(9)

In the case gi = 0, (7) reduces to

log
( 1+ α2

i 〈 fX/ fYi〉

1+ α2
i diCdT

i /σ2
i

)

= log
(

1+
hiα

2
i

1+ α2
i diCdT

i /σ2
i

)

,

therefore if hi > 0 it attains its global minimum 0 at 0 and if
hi < 0 it attains its global minimum log(1+hiσ

2
i /diCd

T
i ) at

±∞. Thus the minimum point is still α∗
i as given in (9), using

the first formula if hi < 0 and the second formula if hi > 0.
Finally, in the case both gi and hi vanish, (7) is a constant and
formulas (9) become indeterminate.

We now consider the choice of ei. The minimum of (7),
that is its value at α∗

i , equals

log
(

1+ α∗
i

2gi +hiα
∗
i

1+diCdT
i /σ2

i

)

= log(1+giα
∗
i )

since α∗
i satisfies gi + hiα

2
i − giα

2
i dCd

T/σ2
i = 0. Thus the

best choice of ei would be the one which maximizes −giα
∗
i

where gi and α∗
i are given in (8) and (9). Unfortunately, it is

not possible to obtain a closed form formula for such choice.
Therefore, we shall consider two alternative choices

• The quasi-Newton choice: Consider the expansion of
C(B + uieiB

c) with respect to the (small) row vector
ei, where ui is the column vector with 1 on the i-th
row and 0 elsewhere. From the results of section 3,
the first and second order terms of this expansion are
2Γi·e

T
i and eiHie

T
i , where Γi· is the i-th row of Γ =

1
2
Ċ(B)BcT and hence equals 〈 fYiX/ fYi〉B

cT and Hi =

B
c(〈 fX/ fYi〉−C/σ2

i )BcT. Thus minimizing this expan-

sion would yield ei = Γi·H
−1
i . Note that for this choice,

gi = hi =Γi·H
−1
i Γ

T
i· . Such choice however does not guar-

antees the convergence of the algorithm (see below).

• The simple choice: It consists in approximating 〈 fX/ fyi〉

by 〈 fX 〉〈 f
−1
Yi

〉 = C〈 f−1
yi

〉, which results in approximat-

ing Hi by a multiple of B
c
CB

cT. Since a constant
can be absorbed in αi, this leads to choosing ei =
Γi·(B

c
CB

cT)−1. An advantage of this choice is thatdi =
〈 f TYiX/ fYi〉B

cT(Bc
CB

cT)−1
B

c can be computed without

computing B
c, since by (6)

B
cT(Bc

CB
cT)−1

B
c = C

−1−B
T(BCB

T)−1
B.

Further, gi = diCd
T
i and hi = di〈 fX/ fYi〉d

T
i −gi/σ2

i .

4.3 Convergence of the algorithm

For the intra-source update, the criterion is decreased unless
hi j = 0 for all i 6= j, which is equivalent to that Ċ(B)BT = 0.
For the extra-source update, note that by (9):

−giα
∗
i =

√

h2i +4g2i diCdT
i /σ2

i −hi

2diCdT
i /σ2

i

hence the criterion is decreased unless gi = 0 and hi ≥ 0.
However, unlike the intra-source update, gi = 0 may not en-
tail that Γi· = 0. This is the case for the quasi-Newton choice

since then gi = Γ
T
i·H

−1
i Γi· but the matrixHi may not be posi-

tive definite and thus gi can be zero without Γi· being so. For
the simple choice however, gi = eiB

c
CB

cT
e
T
i , thus gi = 0

entails ei = 0 which entails Γi· = ei(BCB
cT) = 0. For this

choice, the algorithm will converge to (at least) a local min-
imum since the criterion is decreased at each step until its
gradient vanishes.

4.4 Complexity of the algorithm

We compare the complexity of our algorithm with respect
to the one which extract all sources. Note that the later is a
particular of the former by taking p = K so that there is no
extra-source update. It can be seen that for the full extraction
algorithm, the computation cost is dominated by the calcu-
lation of the matrices fY(g) which is of the order 2K3|G |
flops (floating point operations) where |G | is the cardinal of
G . In the partial extraction algorithm, this number reduces
to (pK+ p2)K|G |. For the extra-source update, one needs to
compute the 〈 fYiX/ fYi〉which requires about pK

2|G | flops. If
one adopts the simple choice, the extra cost to obtain di, gi
and hi is negligible provided that a prewhitenning has been
performed to reduceC to the identity matrix. Thus the partial
extraction algorithm is cheaper for small p.

5. A SIMULATION EXAMPLE

As a simple example, we generate 3 source sequences of
length 512. They are independent white Gaussian processes
(of zero mean and unit variance) modulated with some pos-
itive processes, the later being the the exponential of certain
autoregressive process of second order. Figure 1 plots the
modulation processes, referred to as standard deviation pro-
files of the sources, and the sources themselves.

We generate further 7 independent sources which are
simply Gaussian white noises. The 10 sources are mixed
and the problem is to recover the 3 interesting non-stationary
sources.

Note that our algorithm is invariant with respect to linear
transformation in the sense that applying it to the data X(t)
starting with a separating matrix B0 is the same as applying
it to the data TX(t) starting with B0T

−1, for any invertible
matrix T. Thus we may apply our algorithm to the unmixed
sources, but starts it at the initial global matrix G0 = B0A.
We adopt the simple choice for the extra-source update. The
algorithm will yield a global matrix G which relates the re-
covered sources to the original ones. As we have no idea
about the mixing matrix, it is natural to chose the initial sep-
arating matrix B0 randomly, which entails that the initial
global matrix G0 is random, although has a different dis-
tribution than that of B0. In this simulation, we simply draw
the elements of G0 as independent standard normal variates.
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Figure 1: Standard deviation profiles of the 3 sources and
these sources themselves

2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Initial global matrix

2 4 6 8 10

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Separating global matrix

Figure 2: Extracting 3 sources: the rows of the initial global
matrix (left panel) and of the final global matrix obtained by
our algorithm (right panel, plotted as function of the column
index

As the sources processes are uncorrelated, the algorithm
will be based only on the local variance of the extracted
sources (M = 1). The local variance is obtained by taking

sample variance (without centering) over moving blocks of
length 32. The blocks are overlapping half of its length,
yielding a total of 31 blocks.
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Figure 3: Extracting 2 sources: the rows of the initial global
matrix (left panel) and of the final global matrix obtained by
our algorithm (right panel, plotted as function of the column
index

The results of the algorithm for extracting 3 sources
(p = 3) are shown in figure 2. The left panel displays the
randomly drawn initial global matrix, plotted row by row, the
right panel displays the obtained final global matrix. (In the
plots, the rows of the global matrices are normalized to have
unit norm so that they have comparable magnitude.) The fi-
nal global matrix shows that the 3 non-stationary sources are
extracted correctly: each of its row contains a single large
term situated at the 2nd, 1st and 3rd columns (this order
however cannot be seen from the graph). The algorithm con-
verges after 25 iterations.

We have also applied our algorithm to extract only 2
sources (p = 2). Source 1 and 3 are extracted correctly (see
figure 3). They are the more non-stationary sources as can be
seen from figure 1. The algorithm converges quicker, after
19 iterations.
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