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ABSTRACT

In this paper we consider the problem of deriving an efficient
adaptation algorithm when the secondary path of a single-
channel feed-forward Active Noise Control (ANC) system
contains a memoryless nonlinearity affecting the output of
the controller. In order to avoid complex nonlinear adap-
tation strategies, the solution proposed consists in the de-
sign of a predistorter that linearizes the input-output rela-
tionship of the memoryless nonlinearity. The linearization
technique exploits the histograms and the cumulative density
functions of the input and output signals. Then, we show how
the linear NLMS adaptation algorithm can be suitably mod-
ified and applied in the framework of a feed-forward delay-
compensated scheme. Theoretical considerations are devel-
oped to show that the algorithm is in general affected by a
bias that depends on the deviations of the linearized model
from the ideal linear input-output characteristic. The results
of the reported experiments confirm, in agreement with the
theoretical analysis, that the accurate design of the predis-
torter can reduce the bias so that useful results can be ob-
tained.

1. INTRODUCTION

Active noise control (ANC) is based on the destructive inter-
ference in a given location of the noise produced by a pri-
mary noise with a secondary signal, having the same ampli-
tude and opposite phase. The interfering signal is generated
by a suitable actuator driven by an adaptive controller, and
propagated through the so-called secondary path up to the
canceling zone [1]. In the feed-forward schemes, the con-
troller is usually implemented as an FIR filter and updated
by means of Filtered-x versions of the standard adaptive al-
gorithms. The input signal, sensed by the reference micro-
phone located in proximity of the noise source, and the sig-
nal gathered by the error microphone located at the canceling
zone are used to this purpose. While the literature is mainly
concerned with linear controllers, it is well known that non-
linearities may influence the behavior of an ANC system. In
fact, in actual systems the source noise may be modeled as
a nonlinear process, the primary path may exhibit some non-
linear behavior, and the secondary path may be also affected
by nonlinear distortions. Among all nonlinear effects, the
most common distortions are those affecting the secondary
path, since they are mainly due to saturation of the electronic
components, such as microphones, analog-to-digital convert-
ers, preamplifiers, power amplifiers and loudspeakers, ex-
ploited to generate the interfering signal. It is worth noting
that while linear components are usually quite expensive, the

use of low-cost devices in the controller permits the realiza-
tion of ANC systems with reduced costs but at the expense
of noticeable nonlinearities. On the other hand, the most dif-
ficult situation to deal with is when the nonlinearities affect
the secondary path. In fact, in this case the optimal solution
of the ANC problem requires the derivation of an exact, or
at least an approximate, inverse of a nonlinear relationship.
As a consequence, this operation is usually computationally
intensive. Moreover, the MSE cost function is no more, in
general, quadratic and thus the adaptive algorithms may con-
verge to local minima.

As a matter of fact, a nonlinear system for ANC can be
divided in two categories, depending on the linearity or non-
linearity, respectively, of the secondary path. With reference
to the first class of ANC systems, various nonlinear con-
trollers have been proposed in the literature using, in gen-
eral, adaptive polynomial filters or artificial neural networks
exploiting functional expansions [2] - [6]. In contrast, few
solutions have been proposed to specifically deal with non-
linear effects in the secondary path. Moreover, most of them
are limited to the application of fixed controllers, designed
using multilayer artificial neural networks [7], [8] and op-
timizations based on genetic algorithms [9]. Recently, an
accurate study of a class of nonlinear controllers based on
functional expansions in presence of nonlinearities in the sec-
ondary path has been performed in [10]. Nonlinear adjoint
LMS-based algorithms, that can reduce to some extent the
computational complexity with respect to the corresponding
nonlinear Filtered-x LMS-based algorithms, have been pre-
sented. Specific solutions can be also found in the literature,
dealing with the problems of signal saturation and other non-
linear distortions that occur in ANC systems used for prac-
tical applications, such as the saturation effects on the input
signal at the reference microphone [11] or at the output of
the actuator [12]. In [11] bilinear filters are used to take into
account the memory effects introduced by the impulsive re-
sponse of the the secondary path. In [12] the attention is cen-
tered on the nonlinearity affecting the power amplifier and/or
the loudspeaker at the output of the controller, modeled as a
memoryless function while the transfer function of the sec-
ondary path is assumed equal to one. The proposal is to use a
linear controller equipped with a linear LMS algorithm with
leakage. This approach avoids the complexity of a nonlinear
LMS algorithm and the identification of the system nonlin-
earity. However, the model studied in [12] is not directly
applicable to a general ANC system.

The method we present in this paper preserves the idea of
resorting to a linear algorithm even in presence of a memo-



ryless nonlinearity localized at the output of the controller in
the secondary path. Our proposal is to linearize such a non-
linearity using the histogram-based compensation described
in [13]. Then, a suitably modified linear NLMS algorithm
can be applied. We also show that this modified NLMS al-
gorithm is in general affected by a bias that depends on the
deviations of the linearized model from the ideal linear input-
output characteristic. Nevertheless, the accurate design of the
predistorter can reduce the bias so that useful results can be
obtained, as shown in the reported experiments.

The paper is organized as follows. In Section 2, the
histogram-based identification and compensation of a mem-
oryless nonlinear device is briefly reviewed. Then, the lin-
ear Filtered-x NLMS algorithm is suitably modified to in-
clude such a compensation technique in the scheme with de-
lay compensation of a single-channel feed-forward ANC sys-
tem. The derived algorithm is analyzed in Section 3, where
its theoretical properties are investigated. The results of com-
puter simulations are reported in Section 4. The conclusions
follow in Section 5.

2. THE FILTERED-X NLMS ALGORITHM WITH
NONLINEARITY COMPENSATION

We refer in this Section to a single-channel feed-forward
ANC structure, equipped with the Filtered-x NLMS algo-
rithm, and including a memoryless nonlinearity in the sec-
ondary path at the output of the controller. While nonlin-
earities with memory usually happen in high-quality audio
equipments [14], memoryless nonlinearities occur typically
at low-cost power amplifiers or loudspeakers. Since our aim
is to design a low-cost ANC system, we limit in this paper
our attention to memoryless nonlinearities representing the
distortions due to the power amplifier and/or the loudspeaker
at the output of the controller. It is worth noting that, in
presence of other nonlinearities affecting the noise source or
the primary path, it is possible to extend the modified linear
NLMS algorithm described below to nonlinear controllers as
those based on the class of filters in which the output depends
linearly on the filter coefficients [6]. In our experimental set-
up we consider two phases of operation of the ANC system.
In the first phase (modeling or learning phase), we charac-
terize the nonlinear device measuring the signals at the input
and at the output of the power amplifier or the loudspeaker.
To this purpose, the histogram-based method described in
[13] is applied. While in principle any kind of signal fill-
ing all the bins of the histogram can be profitably applied, it
can be convenient to directly use the the samples incoming
from the noise source. Then, in the second phase (adaptation
or noise-controlling phase), we operate the ANC system by
adapting the control filter and we keep fixed the linearized
model of the nonlinearity.

2.1 The histogram-based compensation

Let us first summarize the histogram-based technique for the
compensation of a memoryless nonlinearity. The theoretical
foundations and further details can be found in [13]. Our aim
is to design a predistorter PD, placed before a memoryless
nonlinear device NL, so that the output y(n) is a linearized
replica copying the input signal r(n), as schematically shown
in Figure 1. During the modeling (or learning) phase, the
signal r(n) coincides with the primary noise source x(n). We
assume that the input and output signals of the nonlinear de-
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Figure 1: (a) Memoryless nonlinearity NL, (b) compensation
of NL with a predistorter PD.

vice NL are included in the intervals −X ÷X and −Y ÷Y ,
respectively, with X = maxn |x(n)| and Y = maxn |y(n)|. The
method requires the evaluation of the histograms of these
signals, normalized between 0 and 1, on a given number N
of bins. Then, the corresponding cumulative density func-
tions, Pr(r(n)) and Py(y(n)) can be computed as the sums,
normalized between 0 and 1, of all the respective values of
the present and preceding histogram bins. During the adap-
tation phase, the linearization of the memoryless nonlinear-
ity is achieved if the output from the predistorter PD in Fig-
ure 1 (b) satisfies the relation Py(r(n)) = Pr(u(n)). In other
words, the output u(n) from the predistorter that linearizes
the output from the nonlinear device NL can be computed
as u(n) = P−1

r (Py(r(n)) [13]. Since Py and Pr are discrete
functions, defined only for the values marking the histogram
bins, two interpolations are required to compute the actual
value of Py(r(n)) and then of u(n) on the continuous inter-
val 0− 1. Both the direct and inverse calculations are usu-
ally performed connecting with a linear segment the adja-
cent points of Py and Pr, respectively. Thus the block PD
shown in Figure 1 (b) has an input-output relationship de-
fined by these two linear interpolations. It is worth noting
that the accuracy of the histogram-based model of the non-
linearity, derived during the learning phase, depends on the
deviations between the ideal linear relationship and the ac-
tual result of the linearization procedure. Therefore, for small
values of the number of bins, there are possibly large errors
due to the small number of points supporting the interpola-
tions of Py and Pr. On the other side, for large values of
N, there are possibly large errors due to the fact that not
all the bins of the histograms are visited during the learn-
ing phase. As a consequence, the two curves Pr and Py are no
more strictly monotonically increasing, as required from the
theory in [13], and inconsistencies may appear in the evalua-
tion of the output from the predistorter. Such considerations
motivate the choice on an appropriate intermediate value for
N, and also the use of some simple preprocessing in order
to profitably exploit the input signal in the initial learning
phase, as shown in Section 4.

2.2 The modified Filtered-x NLMS algorithm

Throughout the paper, a feed-forward delay-compensated
scheme [15] is adopted to compensate for the propagation
delay introduced by the secondary path. This scheme is mod-
ified as shown in Figure 2 to include the linearization of a
memoryless nonlinear device in the secondary path. The
output d(n) of the physical primary path P(z) is estimated

as d̂(n) by adding the output ŷ′(n) of the model Ŝ(z) of
the physical secondary path S(z) to the error sensor signal
e(n) = d(n)− y′(n). The error g(n) is then used to update
the weights of W (z) and these weights are finally copied to
the controller. While preliminary and independent evalua-
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Figure 2: Block diagram of delay-compensated feed-forward
Filtered-x structure with nonlinearity compensation.

tion of the transfer function of the secondary path is needed,
the nonlinear device is modeled during the learning phase,
as described in Subsection 2.1. During the adaptation phase,
the histogram-based compensation is used, as indicated in
the dashed box. The linearized input-output relationship of
the predistorter cascaded with the nonlinear device should be
included in the adaptation loop (the block LM in Figure 2).
The block LM is simply modeled by a linear gain depend-
ing on the range of the input and output signals of NL. This
elementary model is preferred to more accurate representa-
tions, as for example the linear regression line that, in con-
trast, is more computationally expensive and may include a
constant term (an offset) that negatively affects the residual
errors. The filter output in the controller is given by the equa-
tion (1)

r(n) = x
T (n)w(n), (1)

where w(n) is the vector formed with the M coefficients of
the control FIR filter

w(n) = [w(n,0),w(n,1), . . . ,w(n,M−1)]T , (2)

and x is the vector formed with the last M samples of the
primary noise signal

x(n) = [x(n),x(n−1), . . . ,x(n−M + 1)]T . (3)

The signal r(n) is used, together with the auxiliary signal
u(n), derived as described in Subection 2.1, to obtain the lin-
earized output y(n). With reference to Figure 2 we can also
derive the following expressions. The output of the physical
secondary path y′(n) is given by

y′(n) = s(n)∗ y(n), (4)

where the symbol ∗ indicates the linear convolution and s(n)
is the finite impulse response of the physical secondary path
S(z). Similarly, the output of the model of the secondary path
ŷ′(n) is given by

ŷ′(n) = ŝ(n)∗ y(n), (5)

where ŝ(n) is the impulse response of the model Ŝ(z) of the
secondary path S(z). The input signal x(n) is filtered by the
finite impulse response ŝ(n) to obtain the signal x̂(n) at the
input of the adaptation loop

x̂(n) = ŝ(n)∗ x(n). (6)

Then it results

r̂′(n) = x̂
T (n)w(n), (7)

where x̂(n) is the vector formed with the the last M samples
of the filtered input signal

x̂(n) = [x̂(n), x̂(n−1), . . . , x̂(n−M + 1)]T . (8)

The output d̂′(n) from the block LM is computed as

d̂′(n) = m · r̂′(n), (9)

where m = Y/X is the gain parameter of the ideal linear
model of the predistorter cascaded with the nonlinear device
NL. Then,

e(n) = d(n)− y′(n) (10)

is the error to be minimized at the location where it is placed
the error microphone, and

g(n) = d̂(n)− d̂′(n) (11)

is the error used to update the filter coefficients together with
the filtered input signal, where

d̂(n) = e(n)+ ŷ′(n). (12)

By minimizing the MSE of g(n), according to the NLMS
algorithm, the following updating equation for the filter co-
efficients is derived

w(n + 1) = w(n)+ µg(n)x̂(n)/(x̂T (n)x̂(n)+ δ ), (13)

where µ is the adaptation step-size and δ is a small constant
value used to avoid possible singularities of the correlation
matrix x̂

T (n)x̂(n).
The computational costs of the whole procedure include

the operations required in the learning phase and in the suc-
cessive adaptation phase. During the learning phase, the cal-
culations of two histograms and two cumulative density func-
tions are required. The corresponding number of operations
depends on the number of samples used during the learn-
ing phase and the number of histogram bins. As shown by
our experiments, both these values can be suitably limited.
Then, in the working ANC phase, the operations per sample
required are those of the standard linear NLMS algorithm
plus one multiplication for the application of the linearized
model in the adaptation loop and four multiplications and
four additions for the direct and inverse interpolations in the
predistorter. Therefore, the total complexity is only a little
higher than that of a linear controller.

3. ANALYSIS OF THE MODIFIED FILTERED-X
NLMS ALGORITHM

We first consider the minimum mean square (MMS) solution
of the ANC problem of Figure 2 in the most general case
when the cascade of the predistorter PD and of the nonlin-
earity NL is equivalent to a memoryless nonlinear system:
y(n) = f (r(n)). It is assumed that the function f (x) can be
expanded in the Taylor series:

f (x) = f (0)+ f ′(0)x +
1

2!
f ′′(0)x2 + . . . . (14)



with f ′ the first derivative of f , f ′′ the second derivative of
f , etc.

According to the hypothesis that the matrix E
{

{s(n) ∗
[

f ′(wT
o x(n))x(n)

]

}· {s(n) ∗
[

f ′(0)x(n)
]

}T
}

is invertible,
the MMS solution of the active noise control problem wo,

wo = min
w

{

E{e2(n)}
}

=

= min
w

{

E
{[

d(n)− s(n)∗ f (wT
x(n))

]2}
}

, (15)

is given by the fixed point of the following equation:

wo = E
{

{

s(n)∗
[

f ′(wT
o x(n))x(n)

]}

·
{

s(n)∗
[

f ′(0)x(n)
]}T

}−1

·E
{

[

d(n)− s(n)∗ f (0)
]

·
{

s(n)∗
[

f ′(wT
o x(n))x(n)

]}

−
1

2

[

f ′′(0)s(n)∗ (wT
o x(n))2

]

·
{

s(n)∗
[

f ′(wT
o x(n))x(n)

]}

+ . . .
}

. (16)

Indeed, by setting to zero the derivative of the term E
{

[

d(n)

−s(n) ∗ f (wT
x(n))

]2
}

with respect to w, and replacing w

with wo, we get:

−2E
{

[

d(n)− s(n)∗ f (wT
o x(n))

]

·
{

s(n)∗
[

f ′(wT
o x(n))x(n)

]}

}

= 0. (17)

Moreover, by replacing f (wT
o x(n)) with its Taylor series ex-

pansion and by manipulating the resulting equation, we ob-
tain the result of Equation (16).

In the hypothesis that f (x) is a linear function, i.e. f (x) =
m · x, we obtain the following closed expression for wo:

wo =
1

m
E

{

x
′(n)x′T (n)

}−1
·E

{

d(n)x′(n)
}

, (18)

where x
′(n) = s(n) ∗x(n). Moreover, in the hypothesis that

the nonlinear system has mild nonlinearities, i.e., in the hy-

pothesis that f (0) + f ′(0)x � 1
2

f ′′(0)x2 + . . . and f (x) '
f (0) + f ′(0)x ' m · x in the range of interest of x, the ex-
pression of Equation (18) provides an approximate estimate
of the MMS solution given by Equation (16).

Let us now consider the adaptation equation of (13), with

g(n) = d̂(n)−m ·wT (n)x̂(n) (19)

regardless f (x) being a linear or a nonlinear function. If we
replace (19) in (13), we take the expectation of the two mem-
bers, and we consider the fixed point of the resulting equa-
tion, in the hypothesis of a perfect modeling of the secondary

path (i.e., ŝ(n) = s(n), d̂(n) = d(n), and x̂(n) = x
′(n)) and of

(13) being convergent, it is proven that w(n) tends to the co-
efficient vector in (18). Thus, in case f (x) = m · x, the algo-
rithm converges to the MMS solution of the ANC problem.
On the contrary, if f (x) 6= m · x, even in the hypothesis of

mild nonlinearities Equation (18) provides only an approx-
imate estimate of (16) and the adaptation in (13) converges
to a biased solution for the ANC problem. Nevertheless, the
smallest is the deviation of f (·) from the ideal linear charac-
teristic, the smallest is the bias in the estimation of the coef-
ficient vector in (16).

Eventually, it should be noted that in the hypothesis of a
perfect modeling of the secondary path the adaptation rule in
(13) can also be written as

w(n+1)=w(n)+(µm)· ĝ(n)x̂(n)/(x̂T (n)x̂(n)+δ ), (20)

with

ĝ(n) =
d(n)

m
−w

T (n)x̂(n). (21)

Equation (20) coincides with the adaptation equation of the
NLMS algorithm with step-size µm, input signal x̂(n) and
desired signal d(n)/m. Thus, the adaptation equation in
(13) has the same convergence properties (e.g., convergence
speed, mean square error, mean square deviation) of this
NLMS algorithm and, in particular, it is convergent when
0 < µ < 2/m.

4. EXPERIMENTAL RESULTS

We consider a multitonal signal composed of three sinusoids
at frequencies 160, 320 and 640 Hz sampled at the sampling
frequency of 8000 Hz. The input signal is normalized to a
unit power and a Gaussian noise with 30 dB of attenuation is
added. All the reported data are averaged on 100 independent
tests using a different seed for the Gaussian noise and random
phases for the three sinusoids. The memoryless nonlinear
device is represented by the input-output relation

y(n) = A · tanh(b · x(n))/b, (22)

that well represents the saturation behavior of a power am-
plifier. In the tests, it has been fixed A = 3 and b = 1.8. The
primary and secondary paths have been obtained by truncat-
ing to 93 samples the impulse responses of the acoustic paths
reported in the companion disk of [1]. For simplicity’s sake,
the perfect modeling condition is assumed in the example,

i.e. Ŝ(z) = S(z). The output of the primary path has been
corrupted with a white Gaussian noise with a 40 dB signal
to noise ratio. The controller is an FIR filter with 32 taps.
The adaptation parameters have been chosen as µ = 0.01 and
δ = 0.001. Table 1 shows the residual power at the micro-
phone error, i.e. an estimation of E[e2(n)], and the Mean-
Square Deviation between the linearized model and the ideal
linear characteristic as a function of the histogram bins. The
columns with L = 1 refer to the direct use of 1000 samples
of the multitonal noise during the learning phase. Due to
the approximation errors in the linearization of the nonlinear
characteristic, there is a bias affecting this situation, as shown
in Section 3. From the analysis of the used data, it appears
that the reason is mainly due to the errors arising because
there are empty bins in the histograms. A simple remedy to
this fact consists of using during the learning phase an inter-
polation with a factor L = 3 on the input and output signals
of the nonlinear device. In practice, in this case, the used
3000 samples are distributed so that there are no more empty
bins and thus the linearization is affected by reduced errors.
The last line in Table 1 indicates the residual power for the
ANC system without the nonlinear block NL, adapted with



Number Residual Power MS Deviation
of bins L=1 L=3 L=1 L=3

21 0.0970 0.0629 0.0447 0.0360
41 0.0563 0.0251 0.0154 0.0094
61 0.0448 0.0178 0.0094 0.0044
81 0.0661 0.0157 0.0123 0.0027

101 0.0588 0.0148 0.0095 0.0017
Linear case 0.0100 0.0000

Table 1: Residual power and Mean-Square Deviation from
linearity.
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Figure 3: Adaptation curves.

the standard linear NLMS algorithm. This residual power
can be considered as the unbiased limit to which tends the
modified NLMS algorithm in presence of the nonlinear block
NL. Even though better results are steadily obtained by in-
creasing the number of bins with L = 3, a computationally
efficient compromise can be obtained for 61 bins. Figure 3
shows the ensemble adaptation curves, where each point is
evaluated as the mean value over 50 successive samples, rep-
resenting the residual power measured at the microphone er-
ror for: (a) the ANC system without the nonlinear block NL,
adapted with the standard linear NLMS algorithm, (b) the
ANC system with the nonlinear block NL and without inter-
polation (L = 1), adapted with the modified NLMS algorithm
(61 bins), (c) the ANC system with the nonlinear block NL
and with interpolation (L = 3), adapted with the modified
NLMS algorithm (61 bins), and (d) the ANC system with the
nonlinear block NL, adapted with the standard linear NLMS
algorithm. The curve (c) clearly shows the reduction of the
bias with respect to the curve (b), according to the theoretical
considerations and the data in Table 1.

5. CONCLUDING REMARKS

In this paper it has been shown how the histogram-based
compensation of a memoryless nonlinearity can effectively
work also in the case of a feed-forward ANC system includ-
ing this kind of nonlinearity in the secondary path. The mod-
ified linear NLMS adaptation algorithm proposed in this pa-
per is simple and efficient. A theoretical analysis of the be-
havior of the method, with particular reference to the influ-
ence of the errors that affect the histogram-based lineariza-

tion, is presented to confirm the validity of the proposed ap-
proach. It is worth stressing the fact that this approach allows
the design of efficient ANC systems using low-cost devices
in the controller in spite of their nonlinear characteristics.
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