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ABSTRACT

We propose a variational framework to perform the fu-
sion of an arbitrary number of images while preserving the
salient information and enhancing the contrast for visualiza-
tion. The assumption is that an optimal fused image has a ge-
ometry which approximates the geometry obtained from the
inputs, while at the same time it maximizes the contrast with-
out introducing over-saturation or contouring effects. Based
on this assumption, we construct an energy functional whose
minimization will give the perceptually enhanced fused im-
age.

1. INTRODUCTION

Image fusion can be broadly defined as the process of com-
bining multiple input images into a single one, which con-
tains the ‘relevant’ information from the inputs, in order to
enable a good understanding of the scene. Here, the word
‘relevant’ should be considered in the sense of ‘relevant with
respect to the task the output image will be subject to’, in
most cases high-level tasks such as interpretation or classifi-
cation.

Herein, we are interested in image fusion for visualiza-
tion purposes. In this context, the fusion algorithm requires
to identify the perceptually salient information in the input
images and transfer it into a single composite without intro-
ducing any artifacts or inconsistencies which could distract
or mislead a human observer.

Since local geometric structures are likely to correspond
to perceptually important features, most methods use high
order information of the input images, such as first or sec-
ond derivatives, or scale-space representations, which pro-
vide a convenient representation of such geometric struc-
tures [1, 2, 3]. For instance, a common strategy in multiscale-
based fusion (see [4] for an overview) is to merge the mul-
tiscale transform coefficients from the different inputs and
apply the inverse transform to the composite multiscale de-
composition thus obtained.

In this paper, we propose to use the structure tensor [5, 6,
7] as the main tool to simultaneously describe the geometry
of all the inputs. The basic idea is that the fused image should
have a structure tensor which approximates the structure ten-
sor obtained from the multiple inputs. At the same time, the
fused image should appear ‘natural’ and ‘sharp’ to a human
interpreter. We therefore propose to combine the geometry
merging of the inputs with perceptual enhancement and in-
tensity correction. In particular, the enhancement approach
used in this paper is based on the perceptual color correction
technique proposed in [8]. It is to be noted that the structure
tensor approach is related to the first-order fusion approach
presented in [9]. Another related work is proposed in [10]
where the structure tensor is examined at multiple resolu-
tions.

The paper is organized as follows. Section 2 briefly
presents the perceptual contrast enhancement technique pro-
posed by Bertalmı́o et al. in [8]. Section 3 first reviews the
concept of structure tensor for multi-valued data and then
proposes a functional minimization approach to find a single-
valued image (the fused image) which has the closest geom-
etry to the multi-valued one. In Section 4, a new functional is
constructed in order to jointly perform fusion and enhance-
ment. Through a variational approach, the Euler-Lagrange
equation is derived, and a gradient descent method is em-
ployed to obtain the final output. Some experimental results
are shown in Section 5. Finally, Section 6 ends with some
conclusions and outlines directions for future development.

2. PERCEPTUAL CONTRAST ENHANCEMENT

Let I : Ω→ [0,1] be a gray level image, where Ω ⊂ IR2 de-
notes the image domain and I(x) represents the gray level at
x ∈ Ω. Let J : IR → [0,∞) be a convex even function and
w : Ω×Ω → IR+ a positive symmetric normalized weight
function. Define the average local contrast of I as

C(I) =

∫

Ω

∫

Ω
w(x,y)J

(

I(x)− I(y)
)

dxdy (1)

and the average quadratic local dispersion as

D(I) = β

∫

Ω

(

I(x)− 1

2

)2
dx + γ

∫

Ω

(

I(x)− I0(x)
)2

dx , (2)

where β ,γ > 0 and I0 is the original image we want to en-
hance. The first term in D measures the deviation with re-
spect to its theoretical mean 1/2 (i.e., the middle of the avail-
able dynamic range), while the second term in (2) contains
an attachment to the original data I0 to avoid departing too
much from the original image.

Then, by minimizing the energy functional

E(I) = D(I)−C(I) , (3)

we are increasing the contrast (measured by (1)) while con-
trolling the local dispersion (measured by (2)) of the output
image I. This formulation complies with basic properties
of visual perception and allows to obtain a perceptually en-
hanced version of the original image I0.

We remark that the contrast measure (1) encompasses
several contrast models. Broadly speaking, function J ac-
counts for the relative lightness appearance of the pixel,
while function w weights the amount of local or global con-
tribution. We shall use the same approach as in [8] and
choose J such that J′ is a sigmoid type function, e.g.,

J′(r) = k arctan(αr), k > 0,α > 1 . (4)



Thus, if r = I(x)− I(y), where x is a fixed pixel and y varies
across the image, J′(r) induces a nonlinear behaviour in-
creasing contrast for small differences |r| while saturating for
larger |r|.

3. GEOMETRY-BASED IMAGE FUSION

3.1 Geometry in multi-valued images

The input images to be fused In, n = 1, . . . ,N, are consid-
ered to be the scalar components of a multi-valued image
IM : Ω→ [0,1]N . For every point x = (x1,x2) ∈ Ω, IM(x) =
(

I1(x), . . . , IN(x)
)

, where In(x) is the gray level of input im-
age In at x.

As noticed in [5], the local geometry of a multi-valued
image IM can be represented for all x ∈Ω by

G(x) =
N

∑
n=1

∇In(x)(∇In(x))
T , (5)

where ∇In = ( ∂ In
∂x1

, ∂ In
∂x2

)T . Equivalently,

G(x) =







∑n

(

∂ In
∂x1

)2
∑n

∂ In
∂x1

∂ In
∂x2

∑n
∂ In
∂x1

∂ In
∂x2

∑n

(

∂ In
∂x2

)2






. (6)

In literature one refers to G as the structure tensor or second-
moment matrix. Since G(x) is a positive semi-definite ma-
trix, its eigenvalues are both real and non-negative. The max-
imum λ+ and minimum λ− eigenvalues give the maximum
and minimum rate of change of IM at a given point x, and
the corresponding eigenvectors θ+,θ− give the directions of
maximum and minimum change.

For a single-valued image (N = 1), one can easily obtain

λ+ = |∇I|2, λ− = 0, and θ+ = ∇I/|∇I|, θ− = ∇I⊥/|∇I|.
Thus, for single-valued images the gradient is always per-
pendicular to the edges and we have

∇I =
√
λ+θ+ and G = λ+θ+θ+T .

For multi-valued images,

G = λ+θ+θ+T +λ−θ−θ−T

and it is the value of λ+ together with λ− that discriminates
different local geometries. This local geometry is not only
due to the contribution of each input, but to the interaction
between them. In other words, the structure tensor G gives
a simultaneous description of directional information of all
inputs involved.

3.2 Single-valued representation of multi-valued images

We can therefore attempt to reconstruct a single-valued
image Ĩ (the fused image) whose structure tensor G̃ =
λ̃+θ̃+θ̃+T (and hence its basic geometry) is similar to G =
λ+θ+θ+T + λ−θ−θ−T . In the Frobenius norm sense, the
best approximation is attained by

λ̃+ = λ+ and θ̃+ = θ+ ,

and hence ∇Ĩ =
√
λ+θ+. We have thus translated the prob-

lem of fusion into the inverse problem of obtaining an image

whose gradient is closest to
√
λ+θ+. This can be formulated

as a dispersion measure to minimize, i.e.,

DV (I) =

∫

Ω
|∇I(x)−

√
λ+θ+|2dx , (7)

subject to 0 ≤ I(x) ≤ 1. In the sequel, we refer to V (x) =√
λ+θ+ as the target gradient.

We should point out that the fusion model in (7) coin-
cides with the fusion technique proposed by Socolinsky et
al. in [9].

Using G as in (6), all input images contribute equally to
the geometry description. However, we would like to de-
termine to what extent the local geometry from one input is
more relevant than that from another, and use this knowledge
to decide on an appropriate weighting. To this aim, for each
input In, n = 1, . . . ,N, of IM and each pixel x = (x1,x2) ∈ Ω,
we assign a normalized weight sn(x) which represents the lo-
cal saliency of In in a neighborhood of x. We compute the
weighted structure tensor as

Gs(x) =







∑n

(

sn(x)
∂ In
∂x1

)2
∑n s2

n(x)
∂ In
∂x1

∂ In
∂x2

∑n s2
n(x)

∂ In
∂x1

∂ In
∂x2

∑n

(

sn(x)
∂ In
∂x2

)2






. (8)

The target gradient V is then constructed from the spectral
elements of Gs as described above. That is, the magnitude of
V (x) is the square root of the maximum eigenvalue of Gs(x)
and the direction is the corresponding eigenvector. Note
however that the diagonalization does not uniquely specify
the sign of the eigenvectors. A simple solution to avoid this
ambiguity is to make the orientation of V to agree with that of
the gradient of the average of all inputs. The target gradient
is thus obtained as

V (x) =
√
λ+θ+sign

(

θ+ ·
N

∑
n=1

sn(x)∇In(x)
)

. (9)

There are several possible choices for sn. In particular, for
our experiments in Section 5 we have simply used

sn(x) =
|∇In(x)|

(

N

∑
i=1

|∇Ii(x)|2
)1/2

, (10)

which is a rough indicator of important areas in the images.

4. PERCEPTUAL GEOMETRY-BASED FUSION

Given a multi-valued image IM : Ω→ [0,1]N , our purpose is
to produce a fused image I : Ω→ [0,1] which contains the
local geometry from the different bands while perceptually
enhancing it and maintaining image coherence. To this aim,
we combine the ‘enhancing-purpose’ functional in (3) with
the ‘geometry-merging-purpose’ functional in (7). The new
functional to minimize is

Ẽ(I) = ηDV (I)+ E(I) (11)

= η

∫

Ω
|∇I(x)−V (x)|2dx +β

∫

Ω

(

I(x)− 1

2

)2
dx

+γ
∫

Ω

(

I(x)− I0(x)
)2

dx

−
∫

Ω

∫

Ω
w(x,y)J

(

I(x)− I(y)
)

dxdy ,



subject to 0 ≤ I(x) ≤ 1. Here, I0 is a linear combination (e.g.
an average) of the elements in IM.

We reformulate the functional Ẽ in (11) in a discrete
framework by replacing the integrals by sums (w.r.t. indexes
in a discrete domain Ω) and the gradient by a discrete ap-
proximation using forward difference derivatives. To keep
expressions simple, we have avoided to use a different nota-
tion. The discrete formulation of (11) can be written as

Ẽ(I) = η ∑
x∈Ω

|∇I(x)−V(x)|2 +β ∑
x∈Ω

(

I(x)− 1

2

)2

+γ ∑
x∈Ω

(

I(x)− I0(x)
)2

−∑
x∈Ω
∑
y∈Ω

w(x,y)J
(

I(x)− I(y)
)

(12)

subject to 0 ≤ I(x) ≤ 1.
Before minimizing the functional Ẽ(I), let us derive its

first variation which is shown1 to be

δ Ẽ(I) = 2η
(

divV (x)−∆I(x)
)

+ 2β
(

I(x)− 1

2

)

+2γ
(

I(x)− I0(x)
)

−2 ∑
y∈Ω

w(x,y)J′
(

I(x)− I(y)
)

.

Now, the minimizer of (12) can be found by a gradient de-
scent procedure:

∂ I

∂ t
= −δ Ẽ(I) . (13)

This evolution equation can be explicitly discretized (13) by
the following Euler scheme:

Ik+1(x)− Ik(x)

∆t
= 2η

(

∆Ik(x)−divV (x)
)

+ 2β
(1

2
− Ik(x)

)

+2γ
(

I0(x)− Ik(x)
)

+
Rk

I (x)

2M
, (14)

where ∆t > 0 is the time increment,
Rk

I (x)
2M

=

2∑y∈Ωw(x,y)J′
(

Ik(x)− Ik(y)
)

and M = maxx∈Ω{R0
I (x)}.

We may rewrite (14) as

Ik+1(x) = Ik(x)
(

1−2(β + γ)∆t
)

+ 2η
(

∆Ik(x)−divV (x)
)

∆t

+
(

β + 2γI0(x)+
Rk

I (x)

2M

)

∆t . (15)

The constraint that Ik(x) should remain in the range between
0 and 1 can be imposed after each iteration by truncation.

For the initialization image I0, we use the weighted com-
bination ∑n sn(x)In(x) with weights given by (10). For the
construction of V , the gradients∇In are approximated by for-
ward differences. The divergence divV is then approximated
by backward difference of the components of V . The Lapla-

cian operator is realized by ∆Ik(x1,x2) = Ik(x1 + 1,x2) +
Ik(x1 −1,x2)+ Ik(x1,x2 + 1)+ Ik(x1,x2 −1)−4Ik(x1,x2).

1See [8] for the derivation of δE . The computation of δDV is straight-
forward.

5. SIMULATIONS

Based on the image fusion scheme proposed above, we
present some experimental results. Unless otherwise stated,
we have used η = 0.1, β = 0.5, γ = 0.3, a time increment
∆t = 0.15, a kernel w of Gaussian shape and a slope α = 10

in (4). In all cases, we get to a steady state2 after 12-15 iter-
ations (for images of size 512×512 or below).

Recall that we iteratively minimize (12) using the gradi-
ent descent equation in (15). The limit cases (i) η = 0 and
(ii) β = γ = 0 with null weight function w correspond to
functionals E and DV respectively.

Let us start by comparing the results of simultaneously
performing the geometry merging and enhancement (through
the minimization of Ẽ) with those obtained by the geometry
merging alone (through the minimization of DV ) or by cas-
cading the merging and enhancement stages. We take as in-
put images the complementary pair shown in Fig. 1(a)-(b).
They have been created by blurring the original ‘Camera-
man’ image of size 256× 256 with a disk of diameter of
11 pixels. The images are complementary in the sense that
the blurring occurs at the left half and the right half, respec-
tively. Fig. 1(c) shows the modulus of the target gradient V .
Fig. 1(d) shows the composite image obtained from minimiz-
ing functional DV in (7), while Fig. 1(e) shows the percep-
tual enhanced version of Fig. 1(d). That is, Fig. 1(e) is the
result of minimizing functional E taking Fig. 1(d) as the in-
put image I0. It can be seen that, in both cases, fluctuations
occur around the contours of the man. This ‘halo’ artifact is
avoided in Fig. 1(f), which has been obtained by minimizing
Ẽ = E +ηDV . As Fig. 1(f) shows, the proposed technique
results in a more ‘natural’ look, producing sharper contours
and enhanced contrast.

Next, we compare our method with some multiscale-
based fusion methods. First, we consider the fusion of a
magnetic resonance image (MRI) and a computer tomogra-
phy (CT) image; see Fig. 2(a)-(b). Fig. 2(c) shows the result
obtained by the proposed method of minimizing Ẽ while the
bottom row displays the results obtained through multiscale-
based methods. In Fig. 2(d) we have used the Laplacian
pyramid fusion scheme [12]. Fig. 2(e) shows the fused im-
age obtained by the wavelet fusion scheme proposed by Li et
al. in [11]. Fig. 2(e) illustrates the gradient pyramid fusion
algorithm proposed by Burt and Kolczynski in [1]. We can
observe that the multiscale-based fused images suffer from
a loss of contrast. Notice also the ringing artifacts of the
wavelet fused image at the bottom part. The fused image ob-
tained by the proposed scheme, however, introduces no no-
ticeable artifact and exhibits an increased contrast and detail
information.

Another example is shown in Fig. 3 where images with
different focus are fused. Again we can observe that our
method (Fig. 2(c)) produces enhanced contrast and crisper
edges while avoiding artifacts.

6. CONCLUSIONS

In this paper we have presented a variational model for com-
bining multiple images into a single most informative gray
level image for the purpose of visualization. The main fea-
tures of the model are (1) the use of the structure tensor to si-

2Less than 0.5% of root-mean-squared difference from one iteration to
the next.
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Figure 1: Top: (a)-(b) input images; (c) target gradient V . Bottom: fused images obtained by minimizing (d) DV ; (e) E with I0 = argminIDV

and (f) Ẽ.

multaneously describe the geometry of the inputs, (2) the as-
sumption that the fused image should have a geometry which
strongly resembles the inputs geometry, and (3) the combi-
nation of geometry merging with perceptual enhancement.

The results obtained show that the proposed method pre-
serves important local perceptual cues while avoiding tradi-
tional artifacts such as blurring, ringing or haloing.

Further research is necessary to study the influence of the
different parameters and how to select them in order to opti-
mize the results. Another topic which deserves further study
is the incorporation of multiscale techniques in the proposed
framework.
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Figure 2: Top: (a) MRI and (b) CT input images; (c) fused imaged using Ẽ. Bottom: fused images using (d) the Laplacian pyramid; (e) the
DWT and (f) the gradient pyramid.

(a) (b) (c)

(d) (e) (f)

Figure 3: Top: (a)-(b) input images; (c) fused imaged using Ẽ. Bottom: fused images using (d) the Laplacian pyramid; (e) the DWT and
(f) the gradient pyramid.


