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ABSTRACT

In this work, a framework for inpainting missing parts of
a video sequence is presented. The first step in the algo-
rithm consists of finding the geometrical flow of each frame
in the video sequence by using the Bandelet transform. Con-
sequently, each frame is segmented into a quadtree where
each dyadic square regroups pixels sharing the same geo-
metrical flow direction. Then, two cases are considered. The
first case is concerned with the removal of non-stationary ob-
jects that occlude stationary background. For this, the miss-
ing portions of the video sequence are filled by searching for
pairs of dyadic squares in the successive frames quadtrees
that are valid neighbors to the dyadic squares at the bound-
ary of the inpainting zone. The search for valid neighbors
squares is accomplished by the minimization of a cost mea-
sure that studies the geometrical similarity of each pair of
squares. Once neighbors squares are identified, the corre-
sponding squares in the original frame images are used to
fill-in the missing areas. The second case involves filling-in
moving objects when they are partially occluded. For this,
we propose a priority scheme to first inpaint the occluded
moving objects and then fill-in the remaining area with sta-
tionary background using the method proposed for the first
case. Optical flow is used here, which tells if an undamaged
pixel is moving or is stationary. We evaluate the performance
of our algorithm based on a set of video sequences with dif-
ferent types of occlusions.

1. INTRODUCTION

A lot of research was recently done on so called image
inpainting algorithms which perform the task of filling in
missing or destroyed regions in images. The two main ap-
proaches thereby considered are partial differential equation
(PDE) [1] [2] [5] [3] [4] and texture synthesis algorithms,
usually presuming Markov Random Fields as the underly-
ing image model [6] [7]. Unlike image inpainting, video in-
painting has just recently started receiving more attention.
It presents an entirely different set of challenges due to the
temporally continuous nature of the data. One of the first
efforts can be found in [8] where the PDE is applied spa-
tially, and completes the video frame-by-frame. This does
not take into account the temporal information that a video
provides. The space-time video completion work in [9] ex-
tends the exemplar-based to video by posing the video in-
painting as a global optimization problem. However, the re-
sults shown are for very low resolution video sequences, and
the inpainted static background was different from one frame
to another creating a ghost effect.
An interesting work for video inpainting has been reported in

[10]. It consists of separating foreground objects from back-
ground, and then filling the background image using other
image inpainting algorithm and steering the inpainting of the
foreground object in the directions most consistent with the
local motion. Although it showed good inpainting results,
this method takes an inordinate amount of computation time.
A simpler method was proposed in [11]. It uses background
subtraction and object segmentation to extract a set of object
templates and perform optimal object interpolation using dy-
namic programming to inpaint moving objects.
Although it requires less computation time than the approach
presented in [10], the quality of the obtained results depends
on the segmentation. Furthermore, it works well only in the
case where the background texture is uniform and it does not
provide smooth transition at the boundaries of the inpainting
zone. In addition, moving objects may appear to be sliding
from one frame to another.
In this work, the problem of video inpainting is addressed
from a new angle. Instead of using background subtraction
and object segmentation, we pose it as a problem of a geo-
metrical similarity optimization.
First, the bandelet transform of each frame is computed.
Consequently, each frame is segmented into multiple dyadic
squares where the pixels in each square share the same geo-
metrical properties. The motivation behind the usage of the
bandelet transform is that the geometry of each frame in the
video sequence is summarized with local clustering of sim-
ilar geometric vectors, the homogeneous areas being taken
from the quadtree structure. This will allow us to search for
areas in the whole sequence that are geometrically similar
to the zones around the inpainting domain and consequently
these areas can be used to fill in the missing part.
Then, two cases are considered: the case of the removal
of non-stationary objects that occlude stationary background
and the case of filling-in moving foreground when they are
partially occluded.
For the first case, we search for possible neighbors dyadic
squares to the dyadic squares of the available parts of the
background at the boundaries of the inpainting zone. The
search is performed on the whole sequence. Consequently,
for each square of the boundary of the available part, we
search in the quadtrees of the previous and the succedent
frames for possible neighbor dyadic squares. The search is
based on the geometrical properties of the dyadic squares
which are induced by the bandelet transform, i.e., the side
length and the geometrical direction of each dyadic square.
The search problem is accomplished by the minimization of a
cost measure. After identifying all possible neighbor dyadic
squares in the successive frames, the corresponding squares
in the original frame images are used to fill in the correspond-
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ing missing or damaged zone. That is, for each dyadic square
used to fill in the inpainting zone, the corresponding area (or
square) in the original frame image is used to fill in the miss-
ing part at the same position of dyadic square.
For the case of filling-in moving foreground when they are
partially occluded,we assume the knowledge obtained from
pre-computed optical flow [12] of whether a pixel is mov-
ing or not. Then, the static background is filled-in by us-
ing the method proposed for the first case and the moving
foreground is completed by searching for the best neighbor
dyadic squares in the moving parts from the undamaged parts
in the whole video sequence.
The rest of the paper is organized as follows. In section 2,
a review of the Bandelet transform is presented. In section
3, the bandelet-based video inpainting method is described.
Experimental results are shown in section 4 and section 5
presents some concluding remarks.

2. BANDELET TRANSFORM

We only present here a brief review of the Bandelet
transform. The reader can refer to [13] for a full detailed
description of the Bandelet transform.
The bandelets are defined as anisotropic wavelets that are
warped along the geometric flow, which is a vector field
indicating the local direction of the regularity along edges.
The dictionary of bandelet frames is constructed using a
dyadic square segmentation and parameterized geometric
flows. The ability to exploit image geometry, makes its
approximation optimal for representing the images.
For image surfaces, the geometry is not a collection of
discontinuities, but rather areas of high curvature. The
Bandelet transform recasts these areas of high curvature
into an optimal estimation of regularity direction. Figure 1
shows an example of bandelets along the geometric flow in
the direction of edges. In real applications, the geometry is

Figure 1: An illustration of bandelets with geometric flows
in the direction of the edge. The support of the wavelets is
deformed along the geometric flows in order to exploit the
edge regularity.

estimated by searching for the regularity flow and then for a
polynomial to describe that flow.

Implementation of the Bandelet Transform

The classical tensor wavelet transform of an image I is
the decomposition of the latter on an orthogonal basis
formed by the translation and dilation of three mother
wavelets for the horizontal, vertical and diagonal direc-
tions. Once the wavelet transform is found, the quadtree
is computed by dividing the image into dyadic squares
with variable sizes (refer to [14] for more information on
computing the quadtree). For each square in the quadtree the
optimal geometrical direction is computed by the minimiza-
tion of a lagrangian (refer also to [14]). Then a projection
of the wavelet coefficients along the optimal direction is

performed [14]. Finally a 1D discrete wavelet transform is
carried on the projected coefficients.
On figure 2 one can see, after the bandelet decomposition,
the quadtree, and a zoom on the orientation of the linear
flow on each dyadic square. Notice that the quadtree

Figure 2: Lenna image quadtree segmented

segmentation performs very well in the area corresponding
to edges.
The geometry encoded by the bandelet transform will be
used in the definition of the cost measure. The role of this
cost measure is to determine the geometrical similarity of all
pairs of dyadic squares in the successive quadtrees of each
frame image in the video sequence. Particularly, the size
and the optimal geometrical direction of each square will be
used as criteria to study the similarity. This idea is discussed
in details in the following section.

3. BANDELET-BASED VIDEO INPAINTING

In this section, we describe our method for inpainting
missing parts of a stationary background that is occluded by
a moving object and the filling-in of moving objects that are
partially occluded by stationary or moving foreground or ob-
ject. This section will be divided into two parts treating each
case separately.

3.1 Inpainting Static Background

In this subsection we describe our method of filling-in
missing stationary background occluded by moving or
stationary objects. We search for dyadic squares in the
successive frames that are neighbors according to a cost
measure to the dyadic squares at the boundaries of the
available parts (Fig. 3). This defines a path in the space-time
domain for each dyadic square at the boundary of the
missing zone. This path links each of those dyadic squares
with its possible neighbors in the previous and the following
frames. A point in this path has two neighbor squares, one
before it and one after it.
While the number of paths in the volume is exponentially

large, we do not need to check all of them. The locality
allows us to use dynamic programming to find the global
optimum efficiently. For a dyadic square in one image we
test several possible transitions (or paths) onto the next
images. Each transition can be scored according to the
geometrical similarities between the two squares at each
end.
To find the optimal path we construct a graph where the
nodes represent dyadic squares and the edges are the possible
transitions. The leaves of this graph define the best neighbor
square.
It is to be noted that the inpainting procedure is performed
in an iterative manner. That is, we first define the inpainting
zone (or damaged or missing zone) and then we search
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Figure 3: Inpainting Zone and Dyadic Squares at the bound-
aries of the available part, the inpainting procedure is per-
formed by searching in the previous and succedent frames
for neighbor dyadic squares to fill-in the inpainting region.

for each dyadic square at the boundary of this zone for
neighbor squares. Then, the inpainting zone is redefined and
the procedure is repeated until all the inpainting region is
filled in. We represent in the following paragraphs the cost
measure that is used to determine the neighbors squares.

Definitions

Let ν be a video sequence, ν is an ordered set of im-
ages {It}N

t=1. After performing the bandelet transform, each
image in turn contains an ordered set of dyadic squares
S1
t ,S

2
t ....S

K
t (where K is the total number of squares in the

frame t). The dyadic squares in each quadtree are numbered
from left to right and from top to bottom. The length of
the side of the dyadic squares is made as small as possible
(practically the maximum allowed length is fixed to 8
pixels).
We define the cost measure for any pair of dyadic squares
Sk1
t1 and Sk2

t2 by:

D
(
Sk1
t1 ,Sk2

t2

)
= min
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Sr
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S
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t

)∣∣∣ (1)

where, θ is the optimal geometrical direction in each dyadic
square and l is the side length of the corresponding square.
That is, a pair of squares are valid neighbors if, when placed
side-by-side, they are similar to some pair in one of the video
images. We can get a good upper bound D(., .) by limiting
the search to a window of neighbor squares in the preceding
and succedent frames.
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(2)
where VKn is the set of adjacent dyadic squares to the square
number kn.
The cost function (2) allows us to define a graph where the
cost of each edge efficiently encodes the cost of considering
the corresponding square as a valid neighbor to a square at
the boundary of the inpainting zone.

Graph Construction

Let G = (S,E) designates a graph where the nodes S =
{
Sk
t

}

are the K ·N image squares and the edges E ⊆ S×S encode
the possible transitions between the squares. Each edge has
an associated transition cost D : E → R as defined in (2).
Consider for example the two squares S1

1 from the first frame
and S2

2 from the second frame, denoted by nodes in Fig. 4.
The error of this placement is small if the pair S3

1, S4
2 appears

together in some image. Instead of performing a costly
search, we compute the similarity of S3

1, S3
2, and if they

are similar, then S4
2 can be placed next to S3

1 (just like it is
already placed next to S3

2). Thus, the cost of a transition from
node S j

i to Sk
l is directly related to the similarity between S j

i

to Sk−1
l as given in equation (2).

Once we have found a neighbor for each square at the

Frame 1 Frame 2
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Figure 4: Graph construction. The graph encodes possible
dyadic squares transitions. Each node denotes a square and
the edges represent possible transitions between them. A
square in Frame 1 has one natural transition (p0) = D

(
S3

1,S
4
1

)
within the same frame and 5 possible transitions to the next
frame (p1, ..., p5) = (D(S3

1,S
1
2), .....,D(S3

1,S
5
2)).

boundary of the inpainting zone by using this search pro-
cedure, the inpainting zone is redefined by the remaining
missing parts and the same procedure is repeated for the
dyadic squares at the boundaries of the new inpainting
zone. Finally, the part from the original frame image
corresponding to each of the neighbor squares is used to
fill-in the inpainting zone.
We represent in the next subsection our method for filling-in
moving foreground that is partially occluded by a stationary
or a second moving object.

3.2 Inpainting Moving Foreground

If the target object occludes other moving objects, the
moving objects need to be inpainted after the target object
is removed. In this subsection, we describe a procedure sim-
ilar to the one showed in the previous section that aims at
providing natural object movement during the occlusion and
smooth transition at the boundaries of the occlusion. To sim-
plify the explanation, we assume that there is one single mov-
ing object that needs to be inpainted. If there are multiple
objects, one can apply the same technique to each object.
The moving object is filled in a frame-by-frame procedure,
each frame being completed using the following steps:
1. Identify moving objects by using the optical flow [12].
2. Search in the moving objects for neighbor dyadic squares

to those in the available part of the moving object. The
search procedure is performed by using the cost measure
(2).

3. Search for neighbor dyadic squares in the non-moving re-
gions of the video to fill-in the missing parts of the static
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(a) Synthetic video sequence with an occluded moving
red rectangle

(b) Inpainted video sequence

Figure 5: Synthetic example of object completion

background. This search procedure is performed as in
the first case of the filling-in of static background by us-
ing equation (2).

In the final step, for each dyadic square the corresponding
portion from the frame of the original sequence is used to
fill-in the inpainting zone.

4. EXPERIMENTAL RESULTS

Figure 5 shows an inpainting example of a synthetic
video sequence. The experiment consists of completing
the moving red rectangle being occluded. This artificial
experiment shows that our method can perfectly complete
occluded moving objects.
Figure 6 shows a typical video surveillance sequence (only
8 frames are shown, the video consists of 1800 frames). The
aim is to remove the woman passing the hall and entering
her office. This is a typical example combining the two
inpainting cases: the case of the removal of non-stationary
objects that occlude stationary background (which is the
case of filling-in the static hall parts that are occluded
by the moving woman) and the case of filling-in moving
objects when they are partially occluded (which is the case
of the door being opened by the moving woman). The
corresponding inpainted frames are shown in figure 7. The
inpainted background is consistent throughout the video.
Figure 8 shows the results of both background image
inpainting when the bord is removed and the occluded object
filled-in. Our algorithm performs very well even when the
region to be inpainted is very large.

5. CONCLUSION

In this work, a video inpainting technique based on the
bandelet transform is proposed. It consists of searching be-
tween the quadtrees of each frame in the sequence for pos-
sible neighbors dyadic squares for the squares of the avail-
able parts of the video sequence. A cost measure is defined
which studies the geometrical similarities between the pairs
of dyadic squares and determines if they are valid neighbors.
The proposed method showed a good visual quality in in-
painting static background as well as moving objects.
There are issues that should be addressed in the future work,
e.g., dealing with illumination changes along the sequence.
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Figure 6: Part of the original frame sequence

Figure 7: Corresponding inpainted frames

(a) Part of the original video sequence.

(b) Moving person filled in.

(b) Completely filled in sequence.

Figure 8: Corresponding inpainted frames
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