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ABSTRACT

In this paper, we propose a two-steps image inpainting
algorithm that relies on geometrical grouplets. The grou-
plet orthogonal bases, that were introduced by Mallat in [1],
are constructed with multiscale association field that groups
pixels to take advantage of geometrical image regularities.
These bases are used to represent the complex geometry of
the image to be inpainted. Having well represented the im-
age geometry by using geometrical grouplets, missing data
are synthesized by propagating the geometrical information
from outside to the inside of the inpainting zone. The first step
of the algorithm consists of computing the multiscale associ-
ation field and the grouplet transform of the image. In the
second step, the integral curves of the association field are
computed and propagated inside the inpainting zone to fill
in the missing data. This step is accomplished by minimiz-
ing a functional whose role is to reconstruct the missing or
damaged zone independently of the size and topology of the
inpainting domain. Extensive experiments are carried out in
order to validate and compare the algorithm both quantita-
tively and qualitatively. They show the advantages of our
algorithm and its readily application to real world cases.

1. INTRODUCTION

Image inpainting is the process of filling in damaged or
missing regions of an image with the use of information from
surrounding areas. Its typical applications include restoration
of old paintings and removing scratches from photographs.
The first work on inpainting was introduced by Bertalmio et
al. in [2]. Their model is based on nonlinear partial differen-
tial equations, and imitates the techniques of artists special-
ized in restoration. Their algorithm is based on the propa-
gation of sharp edges into the damaged parts that need to be
filled in.
Subsequently, Bertozzi et al. [3] realized that there exists
a connection between the work presented in [2] and the 2D
fluid dynamics through the Navier-Stokes equation. Indeed,
the steady-state equation proposed in [2] is equivalent to the
Euler equations from incompressible flow, in which the im-
age intensity function plays the role of the stream function in
the fluid problem.
Then, a different approach to inpainting was proposed by
Chan and Shen [4]. They introduced the idea that well-
known variational image denoising and segmentation models
can be adapted to the inpainting task by a simple modifica-
tion. Their first algorithm was based on the total variation de-
noising approach presented in [5]. This model can success-
fully propagate sharp edges into the inpainting zone. How-
ever, because of the regularization term, the model imposes a

penalty on the length of edges, and thus, the inpainting model
cannot connect contours across very large distances.
Subsequently, Chan et al. [6] introduced a new variational
image inpainting model that coped the problems of the total
variation based approach. Their method includes a regular-
ization term that penalizes not merely the length of edges in
an image, but the integral of the square of curvature along
the edge contours. This allows both for isophotes to be con-
nected across large distances, and their directions to be kept
continuous across the edge of the inpainting region. The ma-
jor drawback of this approach is that it suffers from over-
smoothing effect, especially when the regions to be filled are
thick.
Subsequently, Elad. et al. proposed in [12] an inpainting
technique based on a decomposition in a curvelet basis. In
this method, the image is decomposed into two components:
the texture content and the cartoon content using the curvelet
transform. Then, the total variation approach proposed in [5]
is used to fill in the missing regions. This step is performed
on both image components. This approach allows for recov-
ering missing textures data and fine edges, however, its major
drawback is that it does not allow to connect contours across
large distance due to the regularization term.
Recently, Bertalmio [8] proposed a new partial differential
equation (PDE)-based method for inpainting that is based on
the idea that the inpainting problem is non other a particular
case of image interpolation in which we intend to propagate
level lines. By expressing this in terms of local neighbor-
hoods and by using a Taylor expansion, he derived a third-
order PDE that performs inpainting. The third-order PDE
ensures continuation of level lines, which in turn, allows the
restoration of thin structures occluded by a wide gap.
In [9], Wang et al. proposed an inpainting technique that
is based on the propagation of isophotes. Their method is
simple and preserves sharp edges. However, it is unable to
remove artifacts like the discontinuous patterns.
Afterward, Bertozzi et al. proposed in [10] an inpaint-
ing technique based on the Cahn-Hilliard equation. Their
method showed good results in inpainting of degraded text,
as well as superresolution of high contrast images. Still, it
showed some limitations in inpainting large areas.
In this paper, we propose an inpainting approach that is based
on geometrical grouplets. It consists of two steps. First,
the integral curves of geometric association field of different
zones of the image are determined and the grouplet trans-
form is computed. This step allows a better representation of
the multiscale geometry of the image’s structures than other
representation such as the wavelet transform and the bandelet
transform (refer to [1] for a comparison between different ge-
ometrical representations). Having well represented this ge-
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ometry, the information inside the inpainting domain is syn-
thesized by propagating the geometric flow curves inside that
zone.
Geometrical grouplets offer more flexibility in the sense that
we can define geometry along flow lines that are not paral-
lel. This geometrical representation converges toward singu-
larities. Therefore, fine structures are well represented, and
the propagation of the represented geometrical data in the in-
painting region guarantees an efficient reconstruction of the
missing data as the experimental results showed.
The rest of the paper is organized as follows. In section 2
a review of the grouplet transform is given. In section 3 the
inpainting technique is described. Section 4 is devoted for
experimental results and section 5 is a conclusion.

2. GEOMETRICAL GROUPLETS

Geometrical grouplets have been recently introduced by
Mallat in [1]. They are constructed with association fields
that group points to take advantage of geometrical image reg-
ularities. We only present here a brief review of the Grouplet
transform. The reader can refer to [1] for a full detailed de-
scription of the Grouplet transform.
Grouplet transform uses a multiscale association field in or-
der to group together wavelet coefficients in the direction
specified by the flow [1]. These recursive groupings allow
to take into account junctions and long range regularities of
images.
The geometrical grouplet transform is first computed by per-
forming group matching on the 2D wavelet transform of the
image in order to obtain the association field. The role of
this field is to group together points that have similar neigh-
borhoods in order to exploit the geometry of the image. The
computation of the association field is performed as follows:
First the image grid Ω is divided into two subgrids Ωeven
(even columns) and Ωodd (odd columns) then, each point in
the odd subgrid is associated to a point in the even subgrid ac-
cording to a block matching criteria (refer to [1]for more de-
tails). Then, a weighted Haar lifting is applied successively
to points that are grouped by the association field. This itera-
tive process decomposes the original image in an orthogonal
basis called grouping basis. An example of an association
field computed on the Barbara image is shown in figure 1.
Compared to other geometrical representation, such as ban-
delet or curvelet transforms, the grouplet transform is more
flexible since the association fields can deviate from the in-
tegral lines in order to converge to singularity points such
as junction or crossings. Fine image structures are conse-
quently well represented. Therefore, the propagation of the
represented information in the inpainting regions of the im-
age following the integral lines of the association field yields
to a precise reconstruction of the missing data. We represent
in the following section this inpainting technique.

3. INPAINTING USING GEOMETRIC GROUPLET

Given that the image geometry is very well presented and
characterized by a multiscale association field, we represent
in this section a geometric reconstruction method based on
the propagation of the geometric data from outside to inside
the inpainting region to fill-in the missing data. First, we rep-
resent some preliminaries definitions and then we describe
our inpainting technique.

(a) (b)

Figure 1: (a) Original image, (b) a zoom on the association
field of the barbara image

(a) (b)

Figure 2: (a) Integral lines of the association field, (b) Con-
tinuation of the integral lines of the flow

3.1 Preliminaries

The association field is expressed using n real-valued func-
tions on R

n. Let fi (x) for i from 1 to n denote such functions.
Using these, the association vector field is specified as

f ( x) = [ f1 (x) f2 (x) fn (x) ] (1)

In this case, it appears that a vector field is a function f from
R

n to R
n. Therefore, standard function notation will be used

from this point onward to denote the vector association field.
Imagine a point that starts at some x0 ∈ R

n at time t = 0
and then moves according to the velocities expressed in the
association field f . Its trajectory starting from x0 can be ex-
pressed as a function C : [0,∞) → R

n, in which the domain
is a time interval, [0,∞). A trajectory represents an inte-
gral curve (or solution trajectory) of the differential equations
with initial condition C (0) = x0 if

dC
dt

(t) = f (C (t)) (2)

for every time t ∈ [0,∞). This could be expressed in integral
form as

C (t) = x0 +
t∫

0

f (C (s))ds (3)

and is called a solution to the differential equations in the
sense of Caratheodory . Intuitively, the integral curve starts
at x0 and flows along the directions indicated by the velocity
vectors (Figure 2(a)).
The integral curveC is propagated into the inpainting domain
at a constant velocity.

Let the image I be a real value function on a spatial domain
Ω. We designate by ΩD the inpainting domain (ΩD ⊂ Ω).
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The domain ΩD regroups the pixels of the inpainting region
and ∂ΩD denotes the border of the inpainting zone (Figure
2(b)).
The proposed model aims at recovering missing or damaged
areas of an image in such a way as to tie in the integral curves
of the association field along those areas.
To find the continuation of the integral curves, from outside
to inside of the inpainting domain, following the direction of
the association field, we propose a variational approach that
is described in the next section.

3.2 The Inpainting Algorithm

In order to perform the integral curve continuation, we
propose to minimize the following functional:

l =
∫ ∣∣C′ (t)

∣∣dt (4)

where C′(t) is the directional derivative of C with respect
to the geometrical direction θ (the direction that is induced
by the association field vectors) that is determined by the
grouplet transform.

C′ (t) = (x′ (t)cosθ ,y′ (t)sinθ)

To implement equation (4) to carry out the synthesis of
the missing or degraded data, we propose the following al-
gorithm:
1. Definition of the inpainting domain ΩD.
2. Automatic detection of the points belonging to the

boundary ∂ΩD. A pixel x belongs to the border if,
and only if, it belongs to the inpainting domain and any
neighborhood V (x,r) centered at pixel x and radius r
(r ≥ 1), contains at least one pixel not belonging to the
inpainting domain.

3. The filling in of information on the pixels border (belong-
ing to ∂ΩD) is performed in such a way as to satisfy the
condition given by equations (4). In the numerical dis-
cretization, these conditions are reached by the following
procedure.
a. Compute the 2D orthogonal wavelet transform of the

image at a scale 2 j.
b. Compute the association field on the wavelet coef-

ficients by first dividing each subband grid into two
sub-grids called "even sub-grid" (Ωeven) and "odd
sub-grid" (Ωodd) and then associating to each wavelet
coefficient modd in the odd sub-grid a coefficient
meven from the even sub-grid that satisfies the so
called "best fit of radius P" which is defined by:

meven = argmin
m∈Ωeven

∑
|n|<P

|a[m−n]−a [modd −n]|2 (5)

c. Compute the weighted mean and difference over
pairs of pixels that are neighbors according to the
association field. The output of this step is a detail
image and an image corresponding to low frequency
components. The following steps are performed on
both images.

d. Compute the flow integral curve C at each pixel on
the border ∂ΩD from the association field.

Figure 3: Barbara image, degraded with artificial artefacts.

e. The value transported to the pixel in question is:

C (tn +1) = C (tn)+ΔtC′ (tn) (6)

where Δt is the Euclidean distance between C (tn +1)
and C (tn) (see Figure 2(b)). In other word, C (tn +1)
corresponds to the value of the nearest pixel, in the
same direction of the flow defined by the association
field and that does not belong to ΩD, added to the
value of the directional derivative with respect to the
direction of the flow.

f. Step e is repeated until the values of the boundary
points do not change anymore.

g. Compute the inverse grouplet transform.
h. The elements modified by the transportation are ex-

cluded from the inpainting domain.
i. If elements still exist in the new inpainting domain,

go back to step 2.

4. EXPERIMENTAL RESULTS

We perform experiments to validate our algorithm and
compare it with existing ones. Figure 3(a) shows an artifi-
cially degraded version of the ’barbara’ image. The image is
restored by using our grouplet-based inpainting technique as
well as other techniques existing in the literature.

A zoom-in on three of the artefact areas in the restored im-
ages is shown in figures 4, 5 and 6. Visual inspection of these
results shows that a better restoration quality is obtained by
using our grouplet-based algorithm. Both sharp and smooth
edges are well recovered.
Figure 7 shows additional results to remove real objects in
images using the proposed algorithm. The object to be re-
moved (the flower) is of thick shapes. The performance
of different algorithms presented in the experiments can be
measured by a subjective view to the results. It is clear that
our algorithm outperforms other state of the art techniques in
inpainting thick and normal shapes.
Besides using visual inspection, we have also assessed the
performance of the algorithm in a quantitative manner. A set
of experiments was performed on a set of seven 512× 512
images (see the name list in the legends of Fig. 7). These
images were chosen because they exhibit some local struc-
ture. We have conducted the following series of experiments
for each image. Artefacts with random shapes and locations
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(a) (b)

(c) (d)

(e)

Figure 4: (a) Zoom in on the original scratched area, Zoom-
in on the restored image obtained by using: (b) our grouplet-
based technique, the methods of (c) Wang et al. [9], (d)
Bertozzi et al. [10] and (e) Bertalmio [8]

were generated, having sizes of 1, 2, 5, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, and 10000 pixels. For each size and
each image, a single artefact was generated and restored in
100 consecutive experiments (each time with a different, ran-
dom shape and location). For each restoration, the mean-
square error (MSE) was measured between the original and
the reconstructed image. The MSE plots are shown in Fig. 7,
with artefact sizes on a logarithmic scale. For each size and
each image, the median MSE for the 100 experiments was
plotted (this was chosen in order to avoid the influence of a
small percentage of outliers). The MSE values stay within
acceptable ranges, in general. A growing trend for bigger
artefacts is present, as expected (the trend seems to accelerate
at larger sizes because of the logarithmic scale used). From
a perceptual point of view, our algorithm performed satisfac-
torily for MSE values up to about 0.02. Above this value, the
quality of the restoration degraded in a more visible manner.
This value is only a rough estimate and should not to be taken
as an absolute reference, since the MSE is not strictly corre-
lated with the visual quality. Depending on the textural con-
tent and the structural complexity of each image, the restora-
tion errors may start becoming visible at smaller or larger
MSE values and/or artefact sizes. All experiments have been
done with the same parameter setting. This showed that the
parameter setting was not really sensitive to different images
(i.e., different structure configurations), nor to different arte-
fact shapes.

5. CONCLUSION

In this work, a new inpainting technique is proposed,
which allows to reconstruct the inpainting zone by the prop-
agation of the geometrical information obtained by using the
geometrical grouplet from outside to the inside the missing

(a) (b)

(c) (d)

(e)

Figure 5: (a) Zoom in on the original scratched area, Zoom-
in on the restored image obtained by using: (b) our grouplet-
based technique, the methods of (c) Wang et al. [9], (d)
Bertozzi et al. [10] and (e) Bertalmio [8]

(a) (b) (c)

(d) (e)

Figure 6: (a) Zoom in on the original scratched area, Zoom-
in on the restored image obtained by using: (b) our grouplet-
based technique, the methods of (c) Wang et al. [9], (d)
Bertozzi et al. [10] and (e) Bertalmio [8]
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(a) (b)

(c) (d)

(e)

Figure 7: Inpainting to remove objects (a) original image.
Restored image using: (b) Our grouplet-based technique, the
methods of (c) Wang et al. [9], (d) Bertozzi et al. [10] and
(e) Bertalmio [8]

Figure 8: Plot for the experiments done on the image test set.
Each point represents the median MSE of 100 experiments
done on the same image, with random artefacts of the same
size.

zone. The propagation of the geometrical information is per-
formed bu the minimization of a functional. Experiment re-
sults point out the superiority of the proposed method com-
pared to other state of the art inpainting techniques.
Finally, in order to improve the proposed inpainting method,
an aspect deserves to be investigated in future research stud-
ies, which is the independent inpainting applied to each im-
age channel. It could be improved by a joint multichannel
inpainting process.
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