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ABSTRACT

An optimal pilot assisted detector of OFDM signals in frequency
selective fading channels is proposed and investigated. This detec-
tor does not estimate the channel explicitly but jointly processes the
received data and pilot symbols to recover the data with minimum
error. It outperforms the traditional mismatched detectors that treat
channel estimates as perfect. We use complex exponential func-
tions to approximate the channel frequency response and compare
the performance of a channel estimator applying complex exponen-
tial functions and that of an estimator applying the traditional linear
interpolation. We also compare the performance of mismatched de-
tectors using maximum likelihood (ML) channel estimates with that
of the optimal detector. The performance of the proposed optimal
detector is better than that of the mismatched detectors and it is
close to that of the detector with perfect channel information. We
also investigate the performance of iterative receivers in a system
transmitting turbo encoded data. Simulation results show that the
iterative receiver applying the optimal detector at the initial itera-
tion and a mismatched detector in the following iterations outper-
forms the iterative receivers applying mismatched detectors in all
iterations.

Index terms – Frequency selective fading channel, optimal de-
tection, OFDM, complex exponential functions, turbo code, itera-
tive receiver.

1. INTRODUCTION

In orthogonal frequency-division multiplexing (OFDM) systems,
channel estimation is usually performed by employing pilot
tones [1–3]. Then, the channel estimates are treated as perfect
in traditional mismatched detectors [4]. A better detection per-
formance can be obtained by applying an optimal detector which
does not estimate the channel explicitly but jointly processes the
received data and pilot symbols to recover the data with minimum
error [4]. Motivated by this optimal detector which outperforms
the mismatched detectors in a frequency-flat Rayleigh fading chan-
nel [4], we derive such an optimal detector for OFDM systems
in frequency-selective Rayleigh fading channels, and compare its
performance with the performance of mismatched detectors using
maximum likelihood (ML) channel estimates. In order to approx-
imate the channel frequency response at the data positions by us-
ing channel estimates at positions of pilot symbols, linear inter-
polators are usually used [5, 6]. However, the accuracy of such
interpolation is not high. In this paper, we use complex exponen-
tial functions [7, 8] as basis functions to estimate the channel fre-
quency response with higher accuracy. Further, we investigate an
iterative receiver exchanging channel and data estimates, exploiting
soft-input soft-output (SISO) turbo decoding scheme [9]. Specifi-
cally, four iterative receivers are considered: 1) receiver applying a
mismatched detector with ML channel estimates in all iterations; 2)
receiver applying a mismatched detector with regularized ML chan-
nel estimates in all iterations; 3) receiver applying optimal detector
at the initial iteration and a mismatched detector with regularized
ML channel estimates in the other iterations; and 4) receiver apply-
ing the optimal detector in all iterations.
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Figure 1: Block-diagram of the transmitter.
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Figure 2: Structure of an OFDM symbol in the frequency domain.

The paper is structured as follows. In Section II, the trans-
mission model and communication scenarios are introduced. Sec-
tion III describes the proposed optimal detection scheme and mis-
matched detection schemes for frequency-selective fading channels
represented by a series of complex exponential functions. Simu-
lation results are given in Section IV, followed by conclusions in
Section V.

2. TRANSMISSION MODEL

This paper focuses on a single user single-input and single-output
OFDM system. The number of tones (sub-carrier frequencies) in
the system is N . The duration of an OFDM symbol without a cyclic
prefix (CP) is T s 

= N T = 1/∆ f , where ∆ f is the space between
two neighboring tones.

The block-diagram of the transmitter is illustrated in Fig.1. In
the transmitter, information bits are encoded by a turbo encoder,
and the output coded bits are channel-interleaved and modulated
by a QAM mapper, thus producing Nd QAM data symbols. The
average power of modulated symbols is normalized to the unity.
Then, Np = N − Nd pilot symbols are inserted periodically with
a period of P symbols to construct an OFDM symbol in the fre-
quency domain as shown in Fig.2. This OFDM symbol is inverse
Fourier transformed and a CP is added before the transmission. In
the case of uncoded transmission, the turbo encoder and channel in-
terleaver are removed and the information bits are directly applied
to the QAM mapper.

We consider transmission over time invariant frequency-
selective Rayleigh fading channels and assume that the intersymbol
interference (ISI) between consecutive OFDM symbols in the time
domain is eliminated by using a CP, the length of which is Lmax,
and LmaxT is chosen to guarantee the CP to be longer than the max-
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imum channel delay. The channel can be represented by the channel
impulse response

g(τ ) =

L−1
X

k=0

αkδ(τ − τk), (1)

where δ(τ ) is the Dirac delta function, L is the number of paths, τk

and αk are, respectively, the delay and amplitude of the k-th path.
The channel frequency response at the i-th tone is given by

h(i) =
L−1
X

k=0

αke−j2πi∆fτk , (2)

or, in the matrix form,
h = Wα, (3)

where h = [h(0), . . . , h(N − 1)]T , α = [α0, . . . , αL−1]
T , and

W is a N ×L matrix with elements [W]m,n = e−j2πm∆fτn ; (·)T

denotes the matrix transpose.
The path amplitudes are independent zero-mean complex Gaus-

sian random variables with variances σ2
k = ϑ(τk), where the chan-

nel power delay profile ϑ(τ ) is given by [3]

ϑ(τ ) = c · e−τ/τrms , (4)

τrms is the root-mean square width of ϑ(τ ), and c is a constant cho-
sen to provide

PL−1
k=0 σ2

k = 1. The probability density function
(PDF) of the delay τk is given by

fτk
(τk) =



1/(LmaxT ) if τk ∈ [0, LmaxT ],
0, otherwise. (5)

Elements of the covariance matrix Υ of the fading in the frequency
domain is given by [3]

[Υ]m,n =
1 − e−LmaxT ((1/τrms)+j2π m−n

Ts
)

(1 − e−LmaxT/τrms)
“

1 + j2π (m−n)τrms
Ts

” . (6)

where n and m denote two tones of the OFDM symbol.
In the frequency domain, the received OFDM symbol can be

represented as

z(i) = s(i)h(i) + n(i), i = 0, 1, . . . , N − 1, (7)

where z(i) is the received signal at i-th tone, s(i) is a symbol trans-
mitted at the i-th tone, and n(i) are noise samples that are inde-
pendent identically distributed complex Gaussian random numbers
with variance σ2

n. The received signals corresponding to the data
and pilot parts of the OFDM symbol are modeled, respectively, as

zd(fi) = sd(fi)h(fi) + nd(fi), i = 0, 1, . . . , Nd − 1, (8)
zp(ηi) = sp(ηi)h(ηi) + np(ηi), i = 0, 1, . . . , Np − 1. (9)

We denote: z = [z(0), . . . , z(N − 1)]T and s = [s(0), . . . , s(N −
1)]T ; according to (8) and (9), the vector z can be split into a vec-
tor zp = [zp(1), . . . , zp(Np)]

T of received symbols at positions of
pilot tones, and a vector zd = [zd(1), . . . , zd(Nd)]

T of received
symbols at positions of data tones. Correspondingly, the vector s
can be split into a vector sp = [sp(1), . . . , sp(Np)]

T of transmitted
pilot symbols, and a vector sd = [sd(1), . . . , sd(Nd)]T of trans-
mitted data symbols.

3. OPTIMAL AND MISMATCHED DETECTORS

During one OFDM symbol, the channel frequency response is ap-
proximated by basis functions. We apply the complex exponential
functions as basis functions [8] and define an N×M matrix B with
elements

[B]n,m = ej2π(n−1)∆f
(m−1)LmaxT

M−1 , m = 1, . . . , M, n = 1, . . . , N,
(10)

which are samples of the basis functions at the symbol positions
and M is the number of the basis functions. The channel frequency
response can be modeled as a series

h̄(i) =
M

X

m=1

ambm(i∆f), (11)

or, in the matrix form,
h̄ = Ba, (12)

where am are expansion coefficients, and a =
[a1, . . . , am, . . . , aM ]T .

The matrix B can be split into two parts, Bp containing samples
of basis functions at the tones occupied by pilot symbols, and Bd

containing samples of basis functions at the tones occupied by data
symbols, respectively: [Bp]i,m = [B]ηi,m, [Bd]i,m = [B]fi,m.
We define

D = diag{s(1), . . . , s(N)},

Dp = diag{sp(1), . . . , sp(Np)},

Dd = diag{sd(1), . . . , sd(Nd)},

and we will also need the following notations

β = D
H
z, βp = D

H
p zp, βd = D

H
d zd,

A = D
H
D, Ap = D

H
p Dp, Ad = D

H
d Dd,

Γd = σ−2
n B

H
d AdBd, Ld = σ−2

n B
H
d βd,

Γp = σ−2
n B

H
p ApBp, Lp = σ−2

n B
H
p βp,

where (·)H denotes the Hermitian transpose. According to these
notations, (7), (8) and (9) are represented in matrix form by

z = DBa + n, (13)
zd = DdBda + nd, (14)

zp = DpBpa + np. (15)

For deriving the optimal detector for frequency-selective fading
channels modeled by complex exponential functions, we will need
an explicit expression for the covariance matrix Ra of the expan-
sion coefficients a. For obtaining Ra, we will use the following
transform:

Ra = (BH
B)

−1
B

H
ΥB(BH

B)
−1

. (16)

3.1 Optimal detection

We first consider non-iterative receivers. The optimal detector is
derived by maximizing the PDF p(zd|Dd, zp) of the received sig-
nal zd, conditioned on the transmitted data symbols Dd and the
received pilot signal zp [10]:

D̂d,opt = arg max
Dd∈A

{p(zd|Dd, zp)}

= arg max
Dd∈A

{λopt(Dd)} , (17)



where

λopt(Dd) = ln[p(zd|Dd, zp)]

=
1

σ2
n

“

B
H
d βd + B

H
p βp

”H

×
“

B
H
d AdBd + B

H
p ApBp + σ2

nR
−1
a

”−1

×
“

B
H
d βd + B

H
p βp

”

− ln
˛

˛

˛B
H
d AdBd + B

H
p ApBp + σ2

nR
−1
a

˛

˛

˛ . (18)

In order to simplify the computation, we only consider symbol-
by-symbol detection of data symbols. Then, we have Dd = d,
zd = zd(fi), βd = d∗zd(fi), and Ad = |d|2, where (·)∗ denotes
conjugation operator; Bd becomes 1 × M vector corresponding to
the complex exponential samples at the fi-th tone, and (18) changes
to

d̂opt = arg max
d∈A

{p(zd|d, zp)}

= arg max
d∈A

{λopt(d)} , (19)

where

λopt(d) =
1

σ2
n

“

B
H
d βd + B

H
p βp

”H

×
“

|d|2BH
d Bd + B

H
p ApBp + σ2

nR
−1
a

”−1

×
“

B
H
d βd + B

H
p βp

”

− ln
˛

˛

˛
|d|2BH

d Bd + B
H
p ApBp + σ2

nR
−1
a

˛

˛

˛
. (20)

3.2 Mismatched detectors with ML channel estimation

Since the fading statistics are not always available, we also consider
the ML channel estimation that does not require the knowledge of
the matrix Ra. The ML channel estimate is given by

ĥML = BΓ
−1
p Lp = B(BH

p ApBp)
−1

B
H
p D

H
p zp. (21)

However, the performance of the ML estimation is degraded in
noisy scenarios. A better performance is obtained when using a
regularized ML (ǫ-ML) channel estimation based on the diagonal
loading:

ĥǫ−ML = B(Γp + ǫIM )−1Lp

= B(BH
p ApBp + ǫσ2

nIM )
−1

B
H
p D

H
p zp, (22)

where ǫ is a regularization parameter. A mismatched detector uses
a minimum distance (MinD) detector that treats the output of the
channel estimators as perfect channel information, and decides on
the transmitted data symbol at the fi-th data tone by minimizing the
Euclidean distance

λ(d) =
|zd(fi) − dĥ(fi)|

2

σ2
n

, (23)

where ĥ(fi) is the fi-th element of the output of the ML estimator
(21) or the ǫ-ML estimator (22), respectively.

3.3 Receiver

The structure of the iterative receiver is shown in Fig.3. The CP is
removed and the received signal is Fourier transformed before the
first iteration. In iterations, where the optimal detection is used, the
channel estimator and detector are replaced by the optimal detec-
tor. In the other iterations, the channel estimator uses the vectors
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Figure 3: Block-diagram of the receiver.

zp and sp to estimate the channel frequency response. The channel
estimates are used in the detector to calculate the Log-Likelihood
Ratio (LLR) of coded bits. After being processed by the nonlin-
ear function tanh(·) and de-interleaved, the LLRs are decoded by
a SISO turbo decoder. The LLRs of decoded bits are processed by
the hard decision, interleaved and mapped to the QAM constella-
tion to rebuild the data symbols. The pilot symbols are inserted to
recover the OFDM symbol in the frequency domain. The recovered
OFDM symbol is feedback to the channel estimator or to the opti-
mal detector. The channel estimates, LLRs of coded bits and LLRs
of decoded bits are refined once per iteration by treating all recov-
ered data symbols as pilot symbols. Since the channel estimator and
detector applied at the first iteration and those applied in the follow-
ing iterations can be different, the schemes used at the receiver are
correspondingly modified; the details are discussed in Section 4.

3.4 Calculation of LLR for each bit

The SISO decoding scheme relies on the LLR information of each
data bit. The soft information λ(d) of each data symbol has to be
transformed into soft information for each bit λb, where b ∈ [0, 1].
As an example, the detection process for 8-QAM symbols is de-
scribed as follows.

1) Calculate the soft information λ(d) of all 8 options of a
data symbol, d ∈ {000, 001, 010, 011, 100, 101, 110, 111}.

2) Divide the data symbol into 3 data bits as b1b2b3.
The 8 options of the symbol are split into 2 groups: d ∈
{000, 001, 010, 011} and d ∈ {100, 101, 110, 111}, based on ei-
ther b1 = 1 or b1 = 0. The LLR of the first bit is calculated as

λ(b1) = D1 − D0, (24)

where D1 is the maximum value of λ(d) in the second group while
D0 is the maximum value of λ(d) in the first group.

3) Repeat step 2 for the second and third bits, b2 and b3.
4) The soft information of coded bits is obtained by applying

a nonlinear function tanh(·) to LLRs of coded bits.
The soft information of coded bits is deinterleaved and input

into a SISO turbo decoder.

4. SIMULATION RESULT

We consider frequency-selective fading channels with L = 6 paths
and Lmax = 10. In all simulation scenarios, the channel has the
exponential power delay profile (4) with τrms = T , and 8-QAM
modulation is used.

Firstly, we consider the performance of receivers in systems
without coding. The bit-error-rate (BER) performance of the re-
ceiver applying a linear interpolator [5, 6] and a MinD detector,
compared with that of the receiver applying a mismatched detector
with the regularized ML channel estimates based on the complex
exponential functions is shown in Fig.4. It is seen that although the
performance of the receiver with linear interpolation is improved by
increasing the number of pilot symbols Np, the receiver applying a
ǫ-ML channel estimator based on complex exponential functions
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with Np = 24 pilot tones outperforms that using a linear interpo-
lator with Np = 101 pilot tones by 6.7 dB when BER = 10−2.
In the following simulations, the complex exponential functions are
applied rather than the linear interpolator. Fig.5 shows the mean
square error (MSE) performance of the ML channel estimator and
the ǫ-ML channel estimator. The MSE of channel estimation is cal-
culated as

MSE =

PN−1
i=0 |h(i) − ĥ(i)|2
PN−1

i=0 |h(i)|2
. (25)

The Eb/N0 improvement due to the use of the ǫ-ML estimator is
3dB, with respect to the ML estimator when MSE = −20 dB. Thus,
the ǫ-ML estimator with the diagonal loading significantly outper-
forms the ML estimator.

The BER performance of the detectors is shown in Fig.6. It is
seen that for BER = 10−2, the optimal detector outperforms the
ML mismatched detector by 1.8 dB and is inferior to the receiver
with perfect channel information by about 2 dB. The ǫ-ML mis-
matched detector (ǫ = 1) is inferior to the optimal detector by 0.2
dB.

The iterative receiver and rate 1/3 turbo code are used to im-
prove the detection performance. Depending on the detector used
and whether it is the initial or a subsequent iteration, four different
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Figure 6: BER performance of the optimal and mismatched detec-
tors; 8-QAM modulation; N = 507, M = 23, Np = 24, τrms = T ,
Lmax = 10, L = 6.

iterative receivers are considered:
a. ML-ML iterative receiver: The ML estimator is used in all

iterations. At the first iteration, the ML estimator (21) is used to
estimate the channel frequency response based on transmitted pilot
symbols. In the following three iterations, the number of input pi-
lot symbols used to obtain ĥML is extended from Np to N , all of
the recovered data symbols are used as pilot symbols to refine the
channel estimation and signal detection, and consequently, Ap, Dp,
Bp, zp in (21) are replaced by A, D, B and z.

b. ǫ-ML-ǫ-ML iterative receiver: This receiver is similar to the
ML-ML iterative receiver with replacement ĥML by ĥǫ−ML accord-
ing to (22).

c. Optimal-ǫ-ML iterative receiver: The optimal detector (18)
is used at the initial iteration; ǫ-ML estimation and MinD detector
are used in the following three iterations.

d. Optimal-Optimal iterative receiver: In all iterations, the op-
timal detector (18) is used.

Fig.7 and Fig.8 show, respectively, the BER and MSE perfor-
mance of the iterative receivers with a SISO decoder after 4 iter-
ations in a scenario with 8-QAM modulation and rate 1/3 turbo
code. It is seen that the receiver using the optimal detection at the
first iteration outperforms those applying the ML and ǫ-ML estima-
tion schemes. In Fig.7, at the BER = 10−3, the improvement in the
detection performance is 1.8 dB against the ML-ML receiver and 0.7
dB against the ǫ-ML-ǫ-ML receiver. The Optimal-Optimal receiver
and the Optimal-ǫ-ML receiver provide the same BER performance
which is very close to the case of perfect channel information with
only 0.45 dB distance at the BER=10−3. Fig.8 shows that the MSE
performance of the Optimal- ǫ-ML receiver is by 3.2 dB better than
that of the ML-ML iterative receiver and 0.6 dB better than that of
the ǫ-ML-ǫ-ML receiver.

5. CONCLUSIONS

We have proposed and investigated an optimal detection of OFDM
signals in Rayleigh frequency-selective fading channels. The op-
timal detector does not estimate the channel explicitly but jointly
processes the received data and pilot symbols to recover the data
with minimum error. The estimation based on complex exponen-
tial functions is applied to approximate the channel frequency re-
sponse, rather than the traditional linear interpolation. In the case
of 8-QAM modulation, the optimal detector outperforms the mis-
matched detectors exploiting ML channel estimates. We have also
investigated the detection performance of iterative receivers that ex-
changes the soft information between the turbo decoder based on
SISO decoding scheme and the optimal detector or an ML channel
estimator. The simulation results show that the iterative receiver ap-
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plying the optimal detector at the initial iteration does outperform
the iterative receivers applying mismatched detectors in all itera-
tions, and its BER performance is closer to that of the receiver with
perfect channel information. However, we also find that the Eb/N0

improvement due to the optimal detection is not significant if the
complex exponential basis functions are used. In this case, the mis-
matched detector with the regularized channel estimates provides
good performance which is already very close to that of the receiver
with perfect channel estimates.
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