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ABSTRACT

A novel multimodal approach for independent component analy-

sis (ICA) of complex valued frequency domain signals is presented

which utilizes video information to provide geometrical description

of both the speakers and the microphones. This geometric informa-

tion, the visual aspect, is incorporated into the initialization of the

complex ICA algorithm for each frequency bin, as such, the method

is multimodal since two signal modalities, speech and video, are

exploited. The separation results show a significant improvement

over traditional frequency domain convolutive blind source separa-

tion (BSS) systems. Importantly, the inherent permutation problem

in the frequency domain BSS (complex valued signals) with the im-

provement in the rate of convergence, for static sources, is shown

to be solved by simulation results at the level of each frequency bin.

We also highlight that certain fixed point algorithms proposed by

Hyvärinen et. al., or their constrained versions, are not valid for

complex valued signals.

1. INTRODUCTION

Convolutive blind source separation (CBSS) performed in the fre-

quency domain, where the separation of complex valued signals is

encountered, has remained as a subject of much research interest

due to its potential wide applications for example in acoustic source

separation, and the associated challenging technical problems, most

important of which is perhaps the permutation problem. Generally,

the main objective of BSS is to decompose the measurement sig-

nals into their constituent independent components as an estima-

tion of the true sources which are assumed a priori to be indepen-

dent [1] [2].

CBSS algorithms have been conventionally developed in either

the time [3] or frequency [1] [4] [5] [6] domains. Frequency domain

convolutive blind source separation (FDCBSS) has however been

a more popular approach as the time-domain convolutive mixing

is converted into a number of independent complex instantaneous

mixing operations. The permutation problem inherent to FDCBSS

presents itself when reconstructing the separated sources from the

separated outputs of these instantaneous mixtures. It is more se-

vere and destructive than for time-domain schemes as the number

of permutations grows geometrically with the number of instanta-

neous mixtures [7]. In unimodal BSS no priori assumptions are

typically made on the source statistics or the mixing system. On

the other hand, in a multimodal approach a video system can cap-

ture the approximate positions of the speakers and the directions

they face [8]. Such video information can thereby help to estimate

the unmixing matrices more accurately and ultimately increase the

separation performance. Following this idea, the objective of this

paper is to use efficiently such information to mitigate the permu-

tation problem. The scaling problem in CBSS is easily solved by
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matrix normalization [9] [10]. The convolutive mixing system can

be described as follows: assume m statistically independent sources

as s(t) = [s1(t), . . . ,sm(t)]T where [.]T denotes the transpose opera-

tion and t the discrete time index. The sources are convolved with a

linear model of the physical medium (mixing matrix) which can be

represented in the form of a multichannel FIR filter H with memory

length p to produce n sensor signals x(t) = [x1(t), . . . ,xn(t)]
T as

x(t) =
P

∑
τ=0

H(τ)s(t− τ)+v(t) (1)

where v(t) = [v1(t), . . . ,vn(t)]
T and H = [H(0), . . . ,H(P)]. In

common with other researchers we assume n≥m. Using time do-

main CBSS, the sources can be estimated using a set of unmixing

filter matrices W(τ),τ = 0, ..,Q, such that

y(t) =
Q

∑
τ=0

W(τ)x(t− τ) (2)

where y(t) = [y1(t), . . . ,ym(t)]T contains the estimated sources, and

Q is the memory of the unmixing filters. In FDBSS the problem

is transferred into the frequency domain using the short time fre-

quency transform STFT. Equations (1) and (2) then change respec-

tively to:

x(ω,t)≈H(ω)s(ω,t)+v(ω,t) (3)

y(ω,t)≈W(ω)x(ω,t) (4)

where ω denotes discrete normalized frequency. An inverse STFT

is then used to find the estimated sources ŝ(t) = y(t); however, this

will be certainly affected by the permutation effect due to the vari-

ation of W(ωi) with frequency bin ωi. In the following section we

present a fast fixed-point algorithm for ICA of these complex valued

signals, carefully motivate the choice of contrast function, and men-

tion the local consistency of the algorithm. In Sec. 3 we examine

the use of spatial information indicating the positions and directions

of the sources using “data” acquired by a number of video cameras.

In Sec. 4 we use this geometric information to initialize the fixed-

point frequency domain ICA algorithm. In Sec. 5 the simulation

results for real world data confirm the usefulness of the algorithm.

Finally, conclusions are drawn.

2. A FAST FIXED-POINT ALGORITHM FOR ICA

Recently, ICA has become one of the central tools for BSS [1], [2].

In ICA, a set of original source signals s(t) in (1) are retrieved from

their mixtures based on the assumption of their mutual statistical

independence. Hyvärinen and Oja [2] [11] presented a fast fixed

point algorithm (FastICA) for the separation of linearly mixed in-

dependent source signals. Unfortunately, these algorithms are not

suitable for complex valued signals. The use of algorithm [12] in

this paper is due to four main reasons, its suitability for complex



signals, the proof of the local consistency of the estimator, more

robustness against outliers and capability of deflationary separation

of the independent component signals. In deflationary separation

the components tend to separate in the order of decreasing non-

Gaussianity. In [12] the basic concept of complex random variables

is also provided and the fixed point algorithm for one unit is derived,

and for ease of derivation the algorithm updates the real and imagi-

nary parts of w separately. Note for convenience explicit use of the

discrete time index is dropped and w represents one row of W used

to extract a single source. Since the source signals are assumed zero

mean, unit variance and with uncorrelated real and imaginary parts

of equal variances, the optima of E{G(|wHx|2)} under the con-

straint E{|wHx|2} = ‖w‖2 = 1, where E{.} denotes the statistical

expectation, (.)H Hermitian transpose, ‖.‖ Euclidian norm, |.| ab-

solute function; and G(.) is a nonlinear contrast function, according

to the Khun-Tucker conditions satisfy

∇E{G(|wHx|2)}−β∇E{|wHx|2}= 0 (5)

where the gradient denoted by ∇, is computed with respect to the

real and imaginary parts of ω separately. The Newton method is

used to solve this equation for which the total approximative Jaco-

bian [12] is

J = 2(E{g(|wHx|2)+ |wHx|2ǵ(|wHx|2)}−β )I (6)

which is diagonal and therefore easily invertible, where I denotes

the identity matrix and g(.) and ǵ(.) denote the first and second

derivative of the contrast function. Bingham and Hyvärinen ob-

tained the following approximative Newton iteration:

w+ = w−
E{x(wHx)∗g(|wHx|2)}

E{g(|wHx|2)+ |wHx|2ǵ(|wHx|2)}−β

w =
w+

‖w+‖
(7)

where (.)∗ denotes the complex conjugate. In the experiments the

statistical expectation is realized as a sample average.

2.1 Robustness of Contrast Function

A good contrast function is one for which the estimator given by

the contrast function is more robust to outliers in the sample values.

The function used in our experiments is G(y) = log(b+y) and its

derivative is g(y) = 1/(b+ y), where b is an arbitrary positive con-

stant, empirically b ≈ 0.1 is a reasonable value. The robustness of

the estimator is captured in the slow growth of G, as its argument

increases [12].

2.2 Local Consistency

It has been shown in [12] that the earlier results for real signals

and the exact conditions for convergence of algorithms of the form

of (7) to locally consistent separating solutions naturally extend to

complex valued random variables. These results substantiate our

choice of (7) for frequency domain source separation.

3. THE GEOMETRICAL MODEL

Given the position of the speakers and the microphones, the dis-

tances between the ith microphone and the jth speaker di j , and also

their propagation times τi j, can be calculated (see Figure 1 for a sim-

ple two-speaker two-microphone case). Accordingly, in a homoge-

nous medium such as air, the attenuation of the received speech

signals is related to the distances via

αi j =
κ

d2
i j

(8)

where κ is a constant representing the attenuation per unit length

in a homogenous medium. Similarly, τi j in terms of the number of

samples, is proportional to the sampling frequency fs, sound veloc-

ity C, and the distance di j as:

τi j =
fs

C
di j (9)

which is independent of the directionality. However, in practical

situations the speaker’s direction introduces another variable into

the attenuation measurement. In the case of electronic loudspeak-

ers (not humans) the directionality pattern depends on the type of

loadspeaker. Here, we approximate this pattern as cos(θi j/r) where

r > 2, which has a smaller value for highly directional speakers and

vice versa (an accurate profile can be easily measured using a sound

pressure level (SPL) meter). Therefore, the attenuation parameters

become

αi j =
κ

d2
i j

cos(θi j/r) (10)

If, for simplicity, only the direct path is considered the mixing filter

has the form:

Ĥ(t) =

[

α11δ (t− τ11) α12δ (t− τ12)
α21δ (t− τ21) α22δ (t− τ22)

]

(11)

where (.̂) denotes the approximation in this assumption. In the

Fig. 1. A two-speaker two-microphone setup for recording within a

reverberant (room) environment; only distances and angles between

sources and microphones are shown.

frequency domain the above filter has the form

Ĥ(ω) =

[

α11e− jωτ11 α12e− jωτ12

α21e− jωτ21 α22e− jωτ22

]

(12)

Although the actual mixing matrix includes the reverberation terms

related to the reflection of sounds by the obstacles and walls, in such

a room environment it will always contain the direct path compo-

nents as in the above equations. Therefore, we can consider Ĥ(ω)
as a crude biased estimate of the frequency domain mixing filter

matrix, but one which provides the learning algorithm with a good

initialization whilst importantly avoiding the bias in learning when

used as a constraint within the FDBSS algorithm as in [9].

4. PROPOSED GEOMETRICALLY-BASED

INITIALIZATION ICA ALGORITHM

With the help of the estimate Ĥ(ω), as an initialization of the algo-

rithm in [12], we improve the convergence of the algorithm and also

increase the separation performance together with mitigate the per-

mutation problem. Crucially, in the proposed FDCBSS approach,

since the algorithm essentially fixes the permutation at each fre-

quency bin, there will be no problem while aligning the estimated

sources for reconstruction in the time domain.



As an initial step, it is usual in ICA approaches to sphere or

whiten the data i.e. the fist z(ω) = Q(ω)x(ω), where Q(ω) is the

whitening matrix [2].

Next the position and direction information obtained from the

video cameras equipped with a speaker tracking algorithm is au-

tomatically passed to (9) and (10) to estimate the Ĥ(ω) and then

the first column of Ĥ(ω) is used to initialize the fixed point algo-

rithm [12] for each frequency bin.

w1(ω) = Q(ω)ĥ1(ω) (13)

The equivalence between frequency domain blind source sepa-

ration and frequency domain adaptive beamforming is already con-

firmed in [13].

Multiplying both sides of (7) by β −E{g(|wHx|2)+ |wHx|2

ǵ|wHx|2)} we have the following update equation for each fre-

quency bin.

w+
1 (ω) = E{z(ω)(w1(ω)Hz(ω))∗g(|w1(ω)Hz(ω)|2)}

−E{g(|w1(ω)Hz(ω)|2)+ |w1(ω)Hz(ω)|2

ǵ(|w1(ω)Hz(ω)|2)}w1(ω) (14)

w1(ω) =
w+

1 (ω)

‖w+
1 (ω)‖

(15)

which importantly eliminates the need to calculate β .

Since we have m independent components, the other separating

vectors, i.e. wi(ω), i = 2, · · · ,m, are calculated in a similar manner

and than decorrelated in a deflationary orthogonalization scheme.

The deflationary orthogonalization for the m-th separating vector

[2] takes the form

wm(ω)←wm(ω)−
m−1

∑
j=1

{wH
m (ω)w j(ω)}w j(ω) (16)

Finally, we formulate W(ω) = [w1(ω), · · · ,wm(ω)] after sep-

arating all vectors of each frequency bin.

Before starting the update process Ĥ(ω) is normalized once

using Ĥ(ω)← Ĥ(ω)/‖Ĥ(ω)‖F where ‖.‖F denotes the Frobenius

norm.

The algorithm convergence depends on the estimate of Ĥ(ω),
to improve accuracy. In the case of a reverberant environment,

Ĥ(ω) should ideally be the sum of all echo paths, but this is not

available in practice. As will be shown by later simulations, an esti-

mate of Ĥ(ω) obtained from (12) can result in a good performance

for the proposed algorithm in a moderate reverberant environment.

5. EXPERIMENTAL RESULTS

In our experiments which correspond to the environment in Figure

2, the Bingham and Hyvärinen [12] algorithm and the proposed al-

gorithm were tested for real room recordings. The other important

variables were selected as: FFT length T = 1024 and filter length

Q = 512 half of T , r = 4, the sampling frequency for the record-

ings was 8KHz and the room impulse duration was 130ms. In our

proposed algorithm we select G(y) = log(b+y), with b = 0.1.

We first use the performance index PI [1], as a function of the

overall system matrix G = WH, given by

PI(G) =
[1

n

n

∑
i=1

( m

∑
k=1

abs(Gik)

maxkabs(Gik)
−1

)]

+
[ 1

m

m

∑
k=1

( n

∑
i=1

abs(Gik)

maxiabs(Gik)
−1

)]

(17)
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Fig. 2. A two-speaker two-microphone layout for recording within

a reverberant (room) environment. Room impulse response length

is 130 ms.

where Gik is the ikth element of G, to examine the performance of

our algorithm at each frequency bin.

The resulting performance indices are shown in Figure 3 which

shows good performance for the proposed algorithm i.e. close to

zero across the majority of the frequency bins. This is due to ge-

ometrical information used in the initialization. Both algorithms

were tested at fixed iteration count of seven, as our proposed algo-

rithm has converged in this number of iterations. The visual modal-

ity therefore renders our BSS algorithm semiblind and thereby

much improves the resulting performance and rate of convergence.
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Fig. 3. Performance index at each frequency bin for the Bingham

and Hyvärinen algorithm on the top [12] and the proposed algo-

rithm at the bottom, on the recorded signals with fixed iteration

count = 7. A lower PI refers to a superior method.

As mentioned in [1] PI is insensitive to permutation. We there-

fore introduce a criterion for the two sources case which is sensi-

tive to permutation and shown for the real case for convenience, i.e.

in the case of no permutation, H = W = I or H = W = [0,1;1,0]
then G = I and in the case of permutation if H = [0,1;1,0] then

W = I and vice versa therefore, G = [0,1;1,0]. Hence for a permu-

tation free FDCBSS [abs(G11G22)−abs(G12G21)] > 0. We evalu-

ated permutation on the basis of the criterion mentioned above. In



Figure 4 the results confirm that the proposed algorithm automati-

cally mitigates the permutation at each frequency bin.
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Fig. 4. Evaluation of permutation in each frequency bin for the

Bingham and Hyvärinen algorithm at the top [12] and the proposed

algorithm at the bottom, on the recorded signals with fixed iteration

count = 7. [abs(G11G22)− abs(G12G21)] > 0 means no permuta-

tion.

In contrast, the performance indices and evaluation of permuta-

tion by the original FastICA algorithm [12] (MATLAB code avail-

able online) with random initialization, on the recorded mixtures are

shown in Figure 5. We highlight that thirty iterations are required

for the performance level achieved in Figure 5(a) with no solution

for permutation as shown in Figure 5(b). The permutation problem

in frequency domain BSS degraded the SIR to approximately zero

on the recorded mixtures.
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Fig. 5. (a) Performance index at each frequency bin and (b) Eval-

uation of permutation in each frequency bin for Bingham and

Hyvärinen FastICA algorithm [12], on the recorded signals af-

ter 30 iterations. A lower PI refers to a better separation and

[abs(G11G22)−abs(G12G21)] > 0 means no permutation.

Figure 6 confirms the convergence of the underlying cost, i.e.

E{G(|wHx|2)}, within seven iterations for the proposed algorithm.

The results are averaged over all frequency bins. The convergence

within seven iterations with solution for permutation confirm that

the proposed algorithm is robust and suitable for realtime imple-

mentation.
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Fig. 6. The convergence graph of the cost function of the proposed

algorithm using contrast function G(y) = log(b+y); the results are

averaged over all frequency bins.

The proposed algorithm starts with W(ω) = Q(ω)Ĥ(ω), if

the estimate of Ĥ(ω) is unbiased, then Wopt(ω) = Q(ω)Ĥ(ω).

We assumed the estimate of Ĥ(ω) (used in above simulations ob-

tained from (12) the directions of the sources were obtained from

video cameras) is unbiased and calculated the performance shown

in Figure 7, which confirms the estimate is biased, since the envi-

ronment is reverberant therefore Ĥ(ω) should include the sum of

all echo paths, but practically the directions of these reverberations

are not possible to be measured by the video cameras. The conver-

gence of the proposed algorithm within seven iterations including

the solution for permutation, with the biased estimate of Ĥ(ω) con-

firm that the multimodal approach is necessary to solve the cocktail

party problem.
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Fig. 7. (a) Performance index at each frequency bin and (b) Evalua-

tion of permutation in each frequency, assumed Ĥ(ω) is correct i.e.

Wopt (ω) = Q(ω)Ĥ(ω). A lower PI refers to a better separation

and [abs(G11G22)−abs(G12G21)] > 0 means no permutation.



Finally, the signal-to-interference ratio (SIR) was calculated as

in [9] and results are shown in Table 1 for infomax (INFO), FD-

CBSS, Constrained ICA (CICAu), Para and Spence and Proposed

GBFastICA algorithms, where SIR is defined as

SIR =
ΣiΣω |Hii(ω)|2〈|si(ω)|2〉

ΣiΣi6= jΣω |Hi j(ω)|2〈|s j(ω)|2〉
(18)

where Hii and Hi j represents respectively, the diagonal and off-

diagonal elements of the frequency domain mixing filter, and si is

the frequency domain representation of the source of interest.

The results are summarized in Table 1 and confirm the objec-

tive improvement of our algorithm which has been confirmed sub-

jectively by listening tests.

Table 1. Comparison of SIR-Improvement between algorithms and

the proposed method for different sets of mixtures.

Algorithms SIR-Improvement/dB

Parra‘s Method 6.8

FDCBSS 9.4

INFO 11.1

CICAu 11.6

GBFastICA 18.8

6. CONCLUSIONS

In this research a new multimodal approach for independent com-

ponent analysis of complex valued frequency domain signals was

proposed which exploits visual information to initialize a FastICA

algorithm in order to mitigate the permutation problem. The advan-

tage of our proposed algorithm was confirmed in simulations from

a real room environment. The location and direction information

was obtained using a number of cameras equipped with a speaker

tracking algorithm. The outcome of this approach paves the way

for establishing a multimodal audio-video system for separation of

speech signals, with moving sources.
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