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ABSTRACT
Prostheses are an efficient way of alleviating some of the

handicaps suffered by the disabled. One of the most promi-
nent impairments which would greatly benefit from the exis-
tence of visual prosthesis is blindness. Several models and
training algorithms have been proposed to reach such aim.

This paper presents a stochastic model for the retina and
introduces a training method for fitting the model to real
data. The model is based on an integrate-and-fire scheme un-
der additive white noise. A gradient ascent training method
is used to maximize the probability of occurrence of spike
events at a given set of time stamps. The model is trained
using real data and the results are evaluated by using differ-
ent error measures. The quality and the validity of the whole
process is discussed based on that analysis.

1. INTRODUCTION

One of the central aspects of neural coding is the relationship
between the outside stimuli and the raised neuronal activ-
ity inside the brain. In the human visual system, this cor-
responds to the light intensity projected on the retina and
the corresponding sequence of spikes of the excited neurons.
However, an important feature of neurons is the variability of
elicited responses, even to identical repeats of the same stim-
uli [1]. For the purpose of modeling such systems, schemes
exist that are stochastic in nature and that achieve a proper
description of the observed input-output relationship of some
sensory responses. One of the most widely used models
in this area of neuroscience is the Linear-Nonlinear-Poisson
(LNP) model. However this model has a number of short-
comings, one of the most prominent being its low temporal
precision. Integrate-and-fire (I&F) models represent a well
known alternative for spiking neuron models [2] and consti-
tute a more realistic approach which exhibits a high degree
of accuracy [3].

This type of models has been proposed, alongside with
parameter estimation techniques [4, 5]. However the type
of stimuli used in this paper differs from the ones used in
the presented references. Real data is used in this paper,
recorded by stimulating a salamander ON cell with a full field
white noise visual stimulus, which belongs to a subset of data
from [6]. This data was used for testing the model and the
proposed maximization method. This work shows that gen-
eralized I&F models under additive white noise can be de-
scribed by a low number of parameters, making use of basis
functions to describe the involved filtering processes. Such
construction eases the training process by reducing the num-
ber of parameter to be fitted. With the purpose of training
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the model, gradient ascent maximization was implemented
based on the probability of the model to reproduce the real
responses.

The paper is organized as follows. In section 2 the
model for the retina is presented alongside with its math-
ematical concretization. The stochastic properties of the
model are presented and a training method is proposed. Sec-
tion 3 presents results obtained with real data and evaluates
the overall performance of both the model and the training
method. Conclusions follow in the last section.

2. THE RETINA MODEL
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Figure 1: Leaky Integrate-and-Fire Stochastic Model.

The model, depicted in figure 1 has one input, which con-
sists of a visual stimulus, and one output that consists of a se-
quence of discrete events, usually referred to as spike train.
The mechanism responsible for the output is the model’s
leaky integrate-and-fire (I&F) process, which receives as in-
puts the convolved visual stimulus iStim, the convolved out-
put history iHist and an additive noise source Wk ∼N (0,σ2 ).
Both inputs are described by the following convolutions,

iStim j =~k ∗~x j; iHist j =~h∗~y j. (1)

where~k and ~h are linear filters. The integrand v, known as
the subthreshold potential, is described by equation 2:

v j = (1−g)v j−1 + iStim + iHist +Wj (2)

where g denotes the inherent leakage factor of the integrator.
The threshold block of figure 1 is responsible for gen-

erating the spike response y of the model, by raising a neu-
ral event whenever the integrand surpasses a fixed threshold
value Vth. When eliciting a spike, the model’s subthreshold
potential v is reset, hence regenerating the integrative pro-
cess. This potential is discontinuous due to the threshold
block. However, between raised spikes, it follows equation 2
and is thus continuous inside this temporal range which goes
by the name of Interspike Interval (ISI). Equation 2, there-
fore, fully describes the model.
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The~k filter was constructed upon a basis set of Laguerre
functions as shown in equation 3:

~k = ∑
i∈N

ki ·~bi (3)

where ki are the bases gain coefficients, bi are the Laguerre
bases vectors and N represents the number of used bases. The
Z-domain transfer function of the Laguerre bases functions
is [7]:

hL[z] =

√
1−|ε|

1− εz

k−1

∏
i=1

z− ε

1− εz
k = 1, · · ·M (4)

where ε > 1 is a constant value which regulates the position
of the bases poles and M is the total number of bases used.

The ~h after-potential in equation 1 was chosen to be a
negative exponential,

~h =−Gh e−αht (5)

with a Gh gain and a αh decaying rate. The decaying rate
defines the length of the after-potential and consequently the
recent history taken in account by the model.

2.1 Stochastic Properties of the Model
The Wj term in equation 2 represents the noise in the system
which is assumed to be white of variance σ2 and zero mean.
As such, the potential v follows a gaussian density function.

Assuming that there is a space of n samples, at the rate
of 1/dt, until the occurrence of the next spike, the model’s
stochastic nature gets characterized by the following geomet-
ric rule,

vn ∼ (1−g ·dt)vn−1 +Wn, (6)

where dt is the sampling period.
Therefore, the i’th sample potential is affected by

Wi ∼ N (0,σ2
i ) where,

σ
2
i = σ

2
i

∑
k=0

α
2k = σ

2 1−α2(i+1)

1−α2 , (7)

and α = (1−g ·dt).
Thus, assuming that Wj is white noise, the potential curve

follows a gaussian time series N(v|µ j,σ
2
j ), where the mean is

directly taken of the model mathematical formulation (equa-
tion 2), for a particular sample time k, and the variance is
given by the geometric rule already introduced in equation 7.

The total set of model parameters θ , from which the
mean and the variance are extracted is therefore:

θ = {g,k1, · · · ,kN ,Gh,αh,σ} (8)

leading to a total of N +4 parameters.

2.2 Training the Model
These type of models are referred to as point process models
for generating sequences of events. Thus, for all purposes
in the current work there is only two known variables: the
times of occurrence of the spikes and the visual stimuli. No
information whatsoever is given about the subthreshold po-
tential itself, which is seen as a hidden variable. That poses

a problem since an initial guess of the parameters has to be
made in order to construct the potential curve inside the ISI.

Once this initial guess for the parameters is made, a gra-
dient ascent technique is used to maximize the spike occur-
rence probability at the observed times.

2.2.1 Assessing the Probabilities of Occurrence

Dividing the time line of the v subthreshold potential in
several time bins according to a certain sampling time, the
idea is to maximize the probability for the model to fire
at the end of the interval and not firing in the preceding
time bins. Using Bayes rules on the probability of the ISI
P(¬S1, · · · ,¬Sn−1,Sn), results in:

L =P(¬S1,¬S2, · · · ,¬Sn−1,Sn) =
=P(¬S2, · · · ,¬Sn−1,Sn|¬S1)P(¬S1) =
=P(¬S1)P(¬S2|¬S1)P(¬S3|¬S2) · · ·P(Sn|¬Sn−1)

(9)

where P(¬Si) represents the probability of not firing in the
i’th time bins and P(Sn) represents the probability of the neu-
ron firing at the n’th time bin. Being the ISIs independent
among themselves, these gain functions are extensible in or-
der to contain several ISIs.

To maximize these functions, the application of the natu-
ral logarithm function facilitates the computation as it trans-
forms the multiplication in a sum of log probabilities:

l = lnL = lnP(¬S1)+
n−1

∑
k=2

lnP(¬Sk|¬Sk−1)+

+ lnP(Sn|Sn−1)

(10)

where,

P(¬Sk|¬Sk−1) =
∫ Vth

−∞

N(v|µk,σ
2
k )dv (11a)

P(Sn|¬Sn−1) =
∫

∞

Vth

N(v|µn,σ
2
n )dv

= 1−P(¬Sn|¬Sn−1)
(11b)

and Vth corresponds to the potential threshold of the rectifica-
tion block. The goal is to achieve the highest probability with
a suitable set of parameters and an acceptable noise variance.

In order to apply gradient ascent techniques, thus maxi-
mizing the probabilities of spike occurrence at the observed
times, the derivatives in order to the parameters are taken:

∂ l
∂θi

=
1

P(¬S1)
∂

∂θi
P(¬S1)+

+
n−1

∑
k=2

1
P(¬Sk|¬Sk−1)

∂

∂θi
P(¬Sk|¬Sk−1)+

+
1

P(Sn|¬Sn−1)
∂

∂θi
P(Sn|¬Sn−1)

(12)

Given the Laguerre bases structure of the ~k filter, the
derivatives are then taken in respect to each of the individ-
ual bases gains (ki, i ∈ 1,2,3, · · · ,N) for each of the j sample
times and according to the limits imposed in equations 11
(l1 =−∞, l2 = Vth) and (l1 = Vth, l2 = ∞):

∂Pj

∂ki
=−

(
~bi ∗~x j

)
dt
∫ l2

l1
N′
(

v|µ j(ki),σ2
j

)
dv (13)
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where the (~bi ∗~x j) term represents the convolution between
the i’th basis and the stimulus chunk of interest. The
N′ (v|µ j,σ

2
j ) represents the derivative of the Gaussian den-

sity function in order to the stochastic variable v.
Given the exponential structure of the after-potential and

the resultant two tunable parameters, Gh and αh, the deriva-
tives can be computed as:

∂Pj

∂Gh
=
(
y j ∗ e−αh·t

)
dt
∫ l2

l1
N′
(

v|µ j(Gh),σ2
j

)
dv (14)

where (y j ∗ e−αh·t) is the convolution between the observed
spike train and the gainless exponential, and:

∂Pj

∂αh
= Gh

(
y j ∗−t · e−αh·t

)
dt
∫ l2

l1
N′
(

v|µ j(αh),σ2
j

)
dv

(15)
where (y j ∗ t · e−αh·t) is the convolution between the observed
spike train and the derivative of the gainless exponential in
respect to αh.

At last, taking the derivative in order to the leakage po-
tential:

∂Pj

∂g
= µ

′
j(g)

∫ l2

l1
N′
(

v|µ j(g),σ2
j (g)

)
dv−

−
σ ′j(g)
σ j(g)

[
(v−µ j(g))N

(
v|µ j(g),σ2

j (g)
)]l2

l1

(16)

where [ f (v) ]l2l1 = f (v = l2)− f (v = l1). Taking also the
unknown noise standard deviation as adjustable:

∂Pj

∂σ
=− 1

σ

[
(v−µ j)N

(
v|µ j,σ

2
j (σ)

)]l2

l1

(17)

Given the above set of equations, the goal is to achieve,
through gradient ascent, a set of parameters that match the
experimental results with a relatively high probability of the
gain function and an affordable variance for the noise source.

2.2.2 Gradient ascent technique

The gradient ascent technique is iterative and described by
equation 18:

θn+1 = θn + γn∇(θn),n≥ 0, (18)

where θ represents the adjustable model parameters and γ the
step sizes used in this adjustment. The step sizes are variable
during the process and calculated according to the adaptive
steps rule from [8],

γn =
{

uγn−1 , if ∇(θn)∇(θn−1) > 0
dγn−1 , if ∇(θn)∇(θn−1) < 0

(19)

where,

u = 1+δu d = 1−δd (20)
δu ≈ δd � 1 (21)

2.2.3 First Guess

In order to apply the iterative gradient ascent method, one
has to guess an initial value of the parameters. This guess
must be carefully made, so that the initial parameters lead to
a finite probability and provide a good initial point to start
the ascent.

For that purpose, the leakage term was set to a physio-
logically plausible value (50ms−1) [5] and the filters weights
were computed using least squares linear regression to ap-
proximate the spike-triggered average (STA) [9] of the pair
stimulus-spikes used for the training. Those initializations
are then used to approximate the after-potential parameters
under the minimum possible noise variance. It should be
noted that the STA is however an unscaled estimation based
on white noise analysis, and as such, it cannot be applied un-
der input signals other than white noise signals. An initial
scaling of the~k filter of figure 1was also done by adjusting a
common gain Gk to all the basis.

3. EXPERIMENTAL RESULTS

The presented I&F model is a simplified one and has a re-
stricted regime of applicability. It is under a biologically rel-
evant regime that the model must be analyzed. The proposed
training method was implemented and tested with the exper-
imental data used in [6]. These data consists of 12 trials of
full field white noise stimulation for a salamander ON cell,
where each trial has a duration of 10 seconds with an aver-
age count of 8.34 spikes per second. Only the first half of the
data was effectively used for the training process, being the
second half used for testing purposes.

To assess the quality and the validity of the proposed
model and respective training procedure, we compare our
results with both real data and data generated by a trained
Linear-Nonlinear-Poisson (LNP) model. This model was
chosen for comparison purposes due to its popularity and
simplicity: it consists of a simple linear filter followed by
a non-linearity and a Poisson spike generator [10]. In the re-
sults presented herein, it was used a 1ms sampling period and
the~k filter was set to a length of 500ms and constructed upon
10 basis vectors (see equation 3), which were enough to pro-
vide a quite good approximation of the STA. The threshold
value Vth was set to 1 and the reset value was set to zero. It
was also assumed an absolute refractoriness period of 1ms,
during which the integrative process is stalled.

The spike train responses of the trained models and the
real responses are depicted in figure 2 for the testing portion
of the stimulus (last 5s), which was not used in the training
process. Looking directly at these spike trains, one can see
that most patterns of the response are indeed generated when
using the trained stochastic I&F and that the model clearly
outperforms the LNP model.

The use of known error measures based on distance met-
rics and firing rates provide a comparison of the depicted re-
sults from a numerical stance. Two spike metrics proposed
in [11] were used for a direct comparison of the trained mod-
els responses with the real observed responses. These metrics
evaluate the cost of transforming one given spike sequence
into another. The first of these metrics accounts for the cost
associated with the absolute time of occurrence of neuronal
events (SpikeTime Metric) and the second one accounts for
the cost in changing the ISIs lengths (InterSpike Metric). The
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Figure 2: Real and estimated neuronal responses.

results of the metrics applied to both the real responses and
the models estimated responses are presented in table 1. The
measures in the table are further separated regarding the train
portion of the data (the first 5s) and the testing portion (the
last 5s). Values in the table’s real vs model rows are cross-
evaluations between the real trials and the estimated trials.
The table specific values were calculated using an associated
q cost value of 50s−1 (see [11]). The LNP results were only
evaluated for the last 5s of testing data.

Analyzing table 1, one can observe that the results are
relatively better (lower) when using the SpikeTime metric.
This indicates that one of the model’s advantages is its tem-
poral precision, which is better according to the results and
in comparison with the LNP model. This result is evident by
looking at the spike trains. As expected, cross-comparisons
of real and estimated data generally have the highest values.
This means that there is a greater difference between spike
trains when these are taken from different sets.

A firing rate metric was also used as an auxiliary
measure, in which the normalized mean squared error
(NMSE) [12] was applied. For that purpose, the firing rates
where estimated for both the real and the estimated data, by
convolving their PeriStimulus Time Histogram (PSTH) [10]
with a Gaussian window of zero mean and σ2 = 20ms. The
results are once again in table 1 and attest once more the su-
periority of the I&F model. Figure 3 further illustrates the
good behavior of the model by displaying portions of the es-
timated firing rates. The approximated firing rate of the I&F
model is close to the real in both the train an the test portions
of the signals and the close values of the NMSE are a good
evidence of what is shown in the depicted firing rates.

A third set of results is present in the column ”spike
count” of table 1 in order to compare the number of spikes
observed. From the results it is seen that there is a slight dif-
ference in the number of spike occurrences in both the train
and the test data, which can be explained with the incapacity
of the model to achieve certain patterns of the real responses.
Nonetheless, these differences are not expressive and are also
present in the LNP model.

Some final remarks should be made. In respect to the
after-potential, the training tended to annul the negative ex-
ponential by setting its gain to very low values, which could

Table 1: Error measures of the trained models responses and
the real responses.

Spike Inter Spike NMSE
Time Spike Count

Training

Real mean 21.84 29.06 39.42
std 2.47 3.61 2.07

I&F mean 30.60 36.20 35.83
std 3.35 2.54 2.59

Real vs mean 32.27 40.30 0.23
I&F std 2.83 3.14

Testing

Real mean 20.35 29.63 44.00
std 2.37 4.01 2.30

I&F mean 31.60 40.73 47.25
std 2.71 3.67 2.45

Real vs mean 31.62 41.99 0.18
I&F std 2.84 3.62

LNP mean 39.63 42.52 40.58
std 3.14 2.53 3.42

Real vs mean 38.01 44.50 0.25
LNP std 3.20 2.27

mean - mean result std - standard deviation

mean that this particular type of after-potential is not suitable
for the given real data. It was also observed that the conver-
gence of the standard deviation of the noise source usually
leads to relatively high values when compared to the poten-
tial threshold used. To alleviate such problem, part of the
training was done by forcing the evolution of the standard
deviation to lower numerical values.
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Figure 3: Comparison between the estimated and observed firing rates.

5. CONCLUSIONS

The work herein shows that the proposed stochastic
integrate-and-fire model is indeed capable of exhibiting most
of the response patterns seen in real data recorded from cells
of the visual system of live specimens. This is achieved with
a relatively low number of parameters, in contrast to some of
the widely used models in neuroscience. The model is also
suitable when high temporal precision is needed, which is
one of the strengths of the proposed model.

The model is also, due to their specific mathematical for-
mulation, computationally tractable and as such, the parame-
ters that govern their behavior can be learned. Here, a method
based on gradient ascent techniques and on a simple Gaus-
sian based gain function was presented and implemented. It
was shown that this method can lead to good results, closely
matching real data in numerous response patterns. Neverthe-
less, it could not match some of them, which means that there
is room for improvement. In fact, noticing that the gain of the
after-potential tended to zero values, leads to the conclusion
that more flexible forms of taking into account the memory
of visual neurons could improve the results. A simple change
in the after-potential form, for example applying basis func-
tions as in the time filter, could also improve the results as
well as the flexibility of the model.
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[7] H. Akçay and B. Ninness, “Orthonormal basis func-
tions for modelling continuous-time systems,” Signal
Processing, vol. 77, no. 1, pp. 261–274, 1999.

[8] L. B. Almeida, T. Langlois, J. D. Amaral, and
A. Plakhov, Parameter Adaptation in Stochastic Opti-
mization. Cambridge University Press, 1998, ch. 6.

[9] L. Paninski, “The spike-triggered average of the
integrate-and-fire cell driven by gaussian white noise,”
Neural Computation, 2006.

[10] E. J. Chichilnisky, “A simple white noise analysis of
neuronal light responses,” Network: Computation in
Neural Systems, 2001.

[11] J. D. Victor and K. P. Purpura, “Metric-space anal-
ysis of spike trains: theory, algorithms and applica-
tion,” Computation Neural Systems, vol. 8, pp. 127–
164, 1997.

[12] M. J. B. II and M. Meister, “Refractoriness and neural
precision,” The Journal of Neuroscience, 1998.

©2007 EURASIP 2518

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

