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ABSTRACT

It is known that the conduction velocity (CV) is a relevant
estimator for fatigue and disease electromyographic (EMG)
studies. CV estimation, which is linked to the time delay of
an EMG signal propagation between two or more sensors,
is particularly interesting in dynamic studies to detect local
changes along the time. In this paper, we investigate three
naturally time-frequency and time-scale methods to follow
CV changes. In this work, the linear relationship between the
phase information and the local time delay between two sig-
nals is used. Our results indicate that the three methods can
be used to follow the conduction velocity evolution during a
recording. Comparing the root mean square errors for each
method highlight that the Fourier coherence method gives
the best results compared to the two other methods (wavelet
phase coherence and phase consistency).

1. INTRODUCTION

The problem of time delay estimation (TDE) is of interest in
many applications such as sonar, radar, speech, seismology
or electrophysiology. In surface electromyography (sEMG),
the TDE permits to obtain the conduction velocity (CV) that
is the speed of the electrical wave propagating along the mus-
cle fiber direction. This indicator is considered as a relevant
estimator to analyse the muscle property changes during a
dynamic or isometric contraction [4, 5] and its evolution is
useful in fatigue and neuromuscular diseases studies.

Basically, only two signals can be used to estimate the
CV of the signal along the muscle fiber. Increasing the num-
ber of electrodes yields to reducing the variance of the esti-
mate also allowing the estimation of the muscle fiber direc-
tion [8] in a matrix configuration case. The most popular sen-
sor is composed of regularly and linearly spaced electrodes,
for which the general model can be defined as:

xk(t) = ak(t)s(αk(t)t − (k−1)θ(t))+wk(t)

k = 1, ...,K; 0≤ t ≤ T
(1)

where s is the original signal measured onK channels as
xk(t). In this model,θ(t) is the time-varying delay between
adjacent channels,αk(t) is a scaling factor,ak(t) is a defor-
mation factor,wk(t) is an independent identically distributed
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(iid) Gaussian noise,k is the number of channel andT is the
duration of the observation.

The estimation of a constant delay was intensively treated
in the past [10, 6] in bioelectrical applications. In the sEMG
basic investigations, the definition (1) is simplified: no scal-
ing and deformation factors are introduced in the model and
the delay is supposed to be constant within the window under
interest. In this case, the equation 1 is rewritten as:

xk(t) = s(t − (k−1)θ)+wk(t) (2)

Based on this model, time or frequency estimation meth-
ods with two or more adjacent signals were used to estimate
θ [6]. However, these methods assume signal stationarity
and constant delay within an epoch of approximately 0.5 to
1 s. For shorter epochs (≤ 100 ms), only one maximum like-
lihood criterion algorithm has been proposed [7]. For nonsta-
tionary sEMG signals, natural time-frequency or time-scale
methods can be used.

Within this scope, we selected three time-varying delay
estimation methods and proposed an experimental set-up for
their comparison. All these method are based on the phase
analysis in a transformed domain. Two of them used the
Fourier transform [1] approach and one, the wavelet trans-
form. To our knowledge, none of these methods have been
tested for time-varying CV estimation.

In order to carry out the comparison, a sigmoidal CV evo-
lution was created and used as possible evolution of the CV
during an experimentation. The methods used to create test
signals are presented in section 2. Section 3 describes the
TDE algorithms. Section 4 presents the results and a dis-
cussion is given in section 5. Finally, some conclusions are
drawn in the section 6.

2. SIGNAL DEFINITION AND TIME DELAY
MODELING

In this study, we considered a reduced version of equation 1
with two channels:

x1(t) = s(t)+w1(t)
x2(t) = s(t −θ(t))+w2(t)

(3)

2.1 Signal definitions

In TDE studies,s(t) is classically assumed to be a white
gaussian noise (WGN). This assumption is not a realistic
one for sEMG signals. The sEMG signal is known to be

©2007 EURASIP 2499

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



limited in the 10-500 Hz frequency band. The generation
of sEMG signals were performed using the model proposed
in [3] where the low frequencyfl and the high frequency
fh are specified. The power spectral density of the modeled
sEMG signal is given by:

P( f ) =
k fh

4 f 2

( f 2 + fl
2)( f 2 + fh

2)
2 (4)

Using this model, we simulated temporal sEMG data by
filtering a WGN with the inverse Fourier transform of the
square root ofP( f ). In this study, we usedfl = 60 Hz and
fh = 120Hz. A 100-tap filter were retained.

In order to evaluate the applicability of different time
varying estimation methods, we considered sEMG signals
without noise.

2.2 Modeling time-varying delay

2.2.1 Delayed signal generation

To simulate the changes that can appear on the CV, we used
the time delay modeling algorithm presented in [2]. This
approach permits to create variable delays that are not neces-
sarily linked to the temporal sampling step:

x2(t) =
∫ +∞

−∞
sinc(θ(t)+ τ)x1(t − τ)dτ (5)

whereθ(t) is a time-varying delay function.
The signalx1(t) is generated according to 2.1 andx2(t)

corresponds to the delayed version ofx1(t). The sampled
version of the equation 5 reads:

x̃2(n) =
p−1

∑
i=−p

sinc(θ(n)+ i)x1(n− i) (6)

wheren is the sample number. The summation is made on
the 2p coefficients of a finite order filter (thesinc function)
leading to an approximation ˜x2(n) of x2(n). In our simula-
tions, p was fixed to 20.

2.2.2 Conduction velocity modeling

The CV evolution was modelised as a sigmoid function.
This model combines possible physiological fast and slow
changes during an experimentation. We expressed the CV
function as:

CV (t) =
5

1+ e−λ (t−2.5)
+3 (7)

whereλ is linked to the slope of the sigmoid.
Based on a maximal acceleration of 2 m.s−2, we found

λ = 8
5. Signals duration was 5 s with a CV range between

3 m.s−1 and 8 m.s−1.
The time varying delayθ(t) is linked to the CV by the

following formula:

θ(t) =
∆e

CV (t)
(8)

where∆e is the interelectrode distance (∆e = 8mm).

3. METHODS

3.1 Basic tools

Temporal approaches for time delay estimation are faced
with temporal resolution linked to sampling frequency. The
frequency approach solves this problem because it leads to
a linear phase slope that is dependent of the temporal delay.
In this approach, considering time-varying delays does not
have obvious solutions. In order to test the ability of natu-
ral time-frequency or time-scale methods to follow temporal
changes, we considered that the delays are locally constant.
In this case, we will estimate the slope of the phase for each
instant. The phase information is contained in the local cross-
spectrumPx1x2(t, f ) and local cross-scalogramWx1x2(t,a) re-
spectively defined as:

Px1x2(t, f ) = X1(t, f )X∗
2 (t, f ) = |Px1x2(t, f )|eiφx1x2(t, f )

Wx1x2(t,a) = WT1(t,a)WT ∗
2 (t,a)

(9)
where the asterisk refers to the conjugate of the signal.
X1(t, f ) and X2(t, f ) are the local Fourier transform of the
signalsx1(t) andx2(t), WT1(t,a) andWT2(t,a) are the con-
tinuous wavelet transform of the same signals:

Xi(t, f ) =
∫ +∞
−∞ h(τ − t)xi(τ)e−i2π f τ dτ

WTi(t,a) =
∫ +∞
−∞ xi(τ) 1√

a ψ∗( τ−t
a )dτ

(10)

where h(t) is the Hanning weighting window function
restricting the Fourier transform around a time instant
t. The functionψ is the parameterized complex Morlet
wavelet [11], for which the central frequencyf0 and the
bandwidth (i.e the duration of the mother wavelet) can be
specified. The frequencyf is linked to the scalea and to f0
by the relationf = f0

a . Thus, we can considerWTi(t,a) as a
function of f andWi(t,a) will be rewritten asWi(t, f ).

Since the data are random, the equations 10 have to be
expressed with a mathematical expectation. In the following
sections, the latter formulas will be redefined with averaging
estimations.

3.2 Fourier phase coherency

Coherence is a measure of linear predictability [10]: 0 if the
signals are not linearly related, 1 if they are. This informa-
tion will be used to select frequencies of interest by compar-
ing the coherence of each frequency to a specific threshold
(0.995). In the following methods, we will thus present nor-
malized estimations, even if the denominator part brings no
phase information.

The local Fourier coherence of two signalsx1(t), x2(t) is
defined as:

cohFx1x2(t, f ) =
Et{Px1x2(t, f )}

√

Et{Px1x1(t, f )}
√

Et{Px2x2(t, f )}
(11)

The expectations were estimated by the Welch method.
Each N-sample window was divided in three N/2-samples
Hanning weighted windows with 50% of overlapping.
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cohFx1x2(t, f ) is a complex time-frequency plane were
the phase can be easily extract at each instant. Indeed, only
the numerator lead to a phase term since 3 and 11 lead
to Et{Px1x2(t, f )} = Et{S(t, f )S∗(t, f )}e2iπθ f , where S(t,f) is
the Fourier transform of s(t) andθ is considered as locally
constant.Practically, estimation ofθ is carried out by a linear
regression on the phaseΦF(t, f ), in least square sense.

3.3 Phase consistency

The local cross-spectrum can be differently averaged in time
as [1]:

κx1x2(t, f ) = Et{
Px1x2(t, f )√

Px1x1(t, f )
√

Px2x2(t, f )
}

= Et{eiφx1x2(t, f )}
(12)

In this definition, we estimate an averaged local normal-
ized cross-spectrum by averaging 20 ms of normalized cross-
spectra around an instantt. By analogy with the method de-
scribed in the section 3.2, the delay was estimated at each
instant by a linear regression on the phase ofκx1x2(t, f ).

3.4 Wavelet phase coherency

The local wavelet coherence of two signalsx1(t), x2(t) can
be defined as:

cohWx1x2(t, f ) =
Et{Wx1x2(t, f )}

√

Et{Wx1x1(t, f )}
√

Et{Wx2x2(t, f )}
(13)

The formula 13 was estimated byδ -sample averag-
ing where δ is linked to the frequencyf by δ ( f ) =
percentage. f0/ f . We chosepercentage = 0.05 which cor-
responds to a 50 ms averaging ofcohWx1x2(t, f ) at the fre-
quencyf = f0 = 60Hz.

Similarly to 3.2, the delay is embedded in the phase in-
formation sinceΦW (t, f ) = 2π f θ .

4. RESULTS

In this section, the three time delay estimators described
above are comparedvia simulation studies. An example of
the sigmoid CV function with the corresponding estimated
CV is given in figure 1. The variance is high whenever the
slope is steep as well as for large CV values since CV esti-
mation errors are inversely proportional to square delay esti-
mation errors.

Monte-Carlo simulations with 100 independent runs
were performed. We considered window analysis durations
between 0.125 s to 1 s. Standard deviation and bias values
were numerically calculated for the three estimation meth-
ods considering, in practice, windows of 128-256-512-1024
samples at a frequency rateFs = 1024Hz.

Results of the local coherence phase algorithm are pre-
sented on the figure 2.

On this figure, the bias was negative for windows of dura-
tion 1s and 0.5s and was positive for shorter windows (0.125s
and 0.25s). Standard deviation was minimum for a window
duration of 0.25s.

Results of the phase consistency algorithm are presented
on the figure 3.
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Figure 1: Example of CV estimation with the Fourier coher-
ence phase method.
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Figure 2: Estimation results using Fourier phase coherence
estimator. Bias and standard deviation are reported as a func-
tion of the four window durations, 0.125s, 0.25s, 0.5s, 1s.
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Figure 3: Estimation results using phase consistency estima-
tor. Bias and standard deviation are reported as a function of
the four window durations, 0.125s, 0.25s, 0.5s, 1s.

The trend of the results for the phase consistency esti-
mation was similar to the results found with the Fourier co-
herence phase algorithm. Excepted for the 0.25s duration
window, the standard deviation of the phase consistency es-
timator is more important.

Results of the wavelet phase coherence algorithm are pre-
sented on the figure 4. The bias is always positive. The stan-
dard deviation are less good than the preceding methods even
if it appears to be less sensitive than the other methods in a
wide range of mother wavelet durations (between 0.5s and
1.5s).

5. DISCUSSION

As expected, a compromise between the duration of the anal-
ysis window and the speed of CV variation exist. The results
suggest that, in a physiological point of view, the analysisdu-
ration should be at least 0.25s. Shorter periods will increase
the estimation error. Longer periods can be chosen depend-
ing on the dynamic character of the experiment. Recall that
our CV sigmoid function contains the fastest variations of
physiological CV that could be observed.

Results obtained with time-scale approach seem to be
disappointing. However, our chosen parameters are certainly
not optimized and other wavelet coefficient averaging tech-
niques can be investigated. The observed bias is not really
disturbing in a physiological sense since trends are usually
analysed.

6. CONCLUSION

The concern of this article was to estimate the ability of nat-
ural time-frequency and time-scale methods to follow time-
varying delays on band limited signals. Application of these
algorithms was the estimation of the conduction velocity of
electromyographic signals. sEMG signal, free of noise, were
simulated to test the algorithms. This study has now to be
carried out including noisy observations. The tested algo-
rithms also have to be applied on real experimental data.

In this study, we focused on using the phase information
of time-frequency and time-scale transforms. Of course, the
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Figure 4: Estimation results using wavelet phase coherence
estimator. Bias and standard deviation are reported as a func-
tion of the four mother wavelet duration defined at the central
frequencyf0=60 Hz, 0.25s, 0.5s, 1s, 2s. The duration of the
wavelet is defined as its standard deviation.

problem of TDE estimation can be solved differently:
• searching the delays can be processed in the Maximum

Likelihood Estimation sense with optimization tech-
niques and objective functions [10].

• the chosen methods belong to the larger classes of affine
class and Cohen’s class. Many other transforms in this
frame could have been studied involving different kinds
of weighting functions in the time and/or frequency do-
mains, also introducing the delicate problem concerning
the choice of their related parameters.
This study is a first step in the time-varying CV estima-

tion problem. Future works concern the introduction of time-
varying delays in the time-frequency/time-scale methods.A
theoretical derivation can be found considering a first order
expansion of the time-varying delay.
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