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ABSTRACT
The ERP signals describe the concentrated electrical activ-
ity of the brain in response to an external event. ERPs ex-
hibit variations in latency, strength and location between var-
ious instances of the same event. Also, different population
groups can show similarities in the characteristics of their
ERPs and this fact is used by clinicians in diagnosis and mon-
itoring of some specific psychiatric diseases. In this paper,
we model the ERP components as transient spikes and use
them as reference signals. We employ a novel localisation
procedure utilising spatial notch filters and the information
from the modelled ERP. The algorithm accurately localises
the ERP sources within a noisy environment.

1. INTRODUCTION

ERPs correspond to the electrical activity in the brain that oc-
curs in response to a stimulus. They are measured primarily
with electroencephalograms (EEGs) which offer a fine tem-
poral resolution and allow an effective study of their time-
course not available with other neuro-imaging techniques.
However, the spatial resolution is limited especially when the
time courses of separate brain sources overlap.

The ERP components of particular importance are the
P300 subcomponents. The composite P300 wave represents
cognitive functions involved in orientation of attention, con-
textual updating, response modulation, and response reso-
lution. It consists of multiple overlapping components, of
which the two main ones are the P3a and P3b. P3a reflects an
automatic orientation of attention to novel or salient stimuli
independent of task relevance. Prefrontal, frontal and ante-
rior temporal brain regions play a major role in generating
P3a giving it a frontocentral distribution. In contrast, P3b
has a greater centro-parietal distribution due to its reliance
on posterior temporal, parietal and posterior cingulate mech-
anisms.

A number of techniques have been developed for the lo-
calisation and estimation of the EEG signals in general. One
of the most popular methods is the dipole fitting method [1]
[2]. The EEG sources are modelled as current dipoles and
then a least squares (LS) fit to the data is performed. Of par-
ticular interest is the multiple signal classification (MUSIC)
method. This method searches for a source at a large number
of possible locations. It performs a grid search employing the
noise subspace of the data utilising the singular value decom-
position (SVD) of the EEG data. Another group of methods
are the linear constrained minimum variance (LCMV) [3] fil-
ters or beamformers [4]. The LCMV method tries to spa-
tially filter the EEG signal so that the activity from only one
location is passed. A grid search is performed to show the
activity from a number of locations. Another main class of

methods are the minimum norm (MN) methods [5]. These
methods use the same dipole model for the sources but in-
stead of looking for one source at a time an inverse solution
is applied to the entire solution space. The inverse solution
is constructed from the forward or lead-field matrix which
makes the system greatly underdetermined considering that
the solution space consists typically of thousands of source
locations. Regularisation and smoothing methods are applied
to create a unique solution [6] [7] [8] [9] [10].

The construction of the algorithm is similar to that of the
LCMV spatial filter method. In the LCMV method the fil-
ter output is minimised, while the activity from one location
passed. Here, we try to force the filter output to be as simi-
lar as possible to our reference ERP component while we cut
off the activity from a location. It turns out that if the ref-
erence signal matches the true ERP and the true location is
within our solution space (i.e is included in the grid search)
then the algorithm will always attain a saddle point at the
correct location. That implies that if the ERP model is not
entirely true, for example, the reference has a slightly differ-
ent latency or width, the algorithm will try to find the closest
match between the reference signal and the extracted one.

The proposed method does not need any prior assump-
tions about the number of sources, and more importantly it
does not require a noise subspace (i.e overdetermined; sys-
tem, more sensors than sources). A number of different cases
are examined for generic data and real EEG. Specifically, we
examine the effect of noise and the effect of correlation be-
tween different ERP components.

2. SOURCES AND EEG MODEL

In the proposed method a head and source model is used to
describe the propagation of the brain sources to the sensors.
The sources are modelled as current dipoles and their prop-
agation to the sensors is mathematically described by an ap-
propriate forward model [11].

We model the EEG signal as an n×T matrix, where n is
the number of electrodes and T is the number of time sam-
ples:

X = HMS+N =
m

∑
i=1

Himisi +N (1)

The second term of equation (1) is the matrix form of the
model and H is a n×3m matrix describing the forward model
of the m sources to the n electrodes. It is further decomposed
into m matrices Hi as:

H = [ H1 ... Hi ... Hm] (2)
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where Hi is an n× 3 matrix whose each column describes
the potential at the electrodes due to the ith dipole for each of
the 3 orthogonal orientations. For example, the 1st column of
Hi describes the forward model of the x component of the ith
dipole when the y and z components are zero. Similarly, M is
a 3m×m matrix describing the orientation of the m dipoles.
Finally, si which is a 1×T vector, is the timecourse of the ith
dipole and N is the combination of the measurement noise
and modelling error.

In addition to the forward model, we create a model for
the timecourse of the ERP sources as well. It is well es-
tablished that they exhibit transient behaviour which can be
captured by a Gaussian spike. Here, we model the ERP ref-
erences as:

ri = exp(−(t− li)2/σ 2
i ) (3)

where li is the latency of the ith ERP component and σi is
the spike width (Figure 1). The EEG then can be explained
as a sum of such spikes and non ERP related activity. Gen-
erally, ERPs are not correlated with each other and occur at
distinct latencies. An exception is the P3a and P3b subcom-
ponents, which overlap slightly but their peaks are distinct.
To use the reference model properly an estimation of their
latencies and widths is necessary. These parameters should
correspond to the true ERP shape of each component. In this
work we focus on the P300 subcomponents (P3a and P3b)
for which an approximate estimate is made by inspection of
the data [12]. Also, many P300 templates can be found in the
literature from other studies to estimate the duration of these
spikes. The spike shapes do not need to be very accurate
since the algorithm finds the closest match.

3. DEVELOPMENT OF THE ALGORITHM

The designed algorithm is based on spatial notch filtering and
minimising the distance of the reference signal and a filtered
version of the EEG. We perform a constrained optimisation
technique in which the primary cost function is the euclidean
distance between the reference signal and the filtered EEG:

fd(w) = ||ri−wT X||22 (4)

The minimum point can be obtained by the classic Least
Squares (LS) minimisation and is given by:

wopt = (XXT )−1XrT (5)

This method designs a filter wopt , which is of dimensions n×
1, and gives an estimate of the reference signal that exists in
the data. However, this procedure alone does not include any
spatial information unless we obtain all the filters wi for all
the sources. This way, we can construct a matrix W, similar
to the separating matrix in an ICA framework, which could
be converted to the forward matrix H [12]. In this work we
wish to estimate the location of a source which matches our
reference signal without having to estimate the w filters for
other sources.

If we use a constraint function such as:

fc(w) = wT H(p) = 0 (6)

where H(p) is the forward matrix of a dipole at location p
and perform a grid search over a number of locations then
the algorithm will point to the true location of the reference

signal (as shown later). Note that H(p) denotes the forward
matrix at location p while Hi denotes the forward matrix of
source i at some location. Such a constraint function can
be thought of as a spatial notch filter. A spatial notch filter
will remove any signal coming from a specific location. The
stopband behaviour of the filter will depend on the number of
electrodes and the spacing between the sources in the grid.
By imposing such a constraint to the original cost function
we force the filter output to have minimum energy from a
particular location.

Practically, we design an adaptive beamformer which
scans a number of locations and tries to find the closest match
to our reference signal. However, at the same time, we are
testing for the absence of the reference signal. This expresses
the main novelty of this work. When the proposed beam-
former scans a particular location it tries to match the refer-
ence signal while placing a null in that particular location.
If the reference signal does not originate from that location
the beamformer will try to find the closest match but will be
influenced by the three degrees of freedom (one degree of
freedom for each orthogonal dipole) that have been used by
placing the null in that location. So, the solution will differ
from the optimum filter that extracts the reference with min-
imum error. In this case, our adaptive beamformer will not
be equal to wopt of equation (5). The wopt filter places nulls
to the locations of the undesired sources (assume r j is our
desired source at location H j):

wT
optHi = 0 i = 1...mand i 6= j (7)

where j refers to the position of the desired source. At some
point during the grid search, the forward matrix H(p) is go-
ing to take the value of the forward matrix of source j, our
desired source. At this point H(p) = H j, which will place
another null in the location of our desired source. So, at this
point our beamformer w satisfies:

wT Hi = 0 i = 1...m (8)

Hence, the only result of the filter will be a zero signal,
which can only be obtained by a filter equal to the null vector.
That is because we have cancelled out all other signals. This
happens only when the beamformer points to the location of
our desired source. For any other location, the beamformer
will try to do its best according to the conditions imposed by
the constraint. So, we steer our beamformer over a number
of locations and at some point it will fail to give any output
(i.e. it is equal to the null vector). That location will be the
location of the desired signal. In other words, the optimum
point of the process is where the algorithm fails to find a
solution.

We will now show that for the correct reference and lo-
cation the filter w is forced to zero. The constrained problem
can be posed as:

min fd(w) subject to fc(w) = 0 (9)

This constrained problem can be converted to an uncon-
strained optimisation procedure by using Lagrange multipli-
ers. Consequently, equation (9) is converted to:

F(w) = fd(w)+ fc(w)q = ||ri−wT X||22 +wT H(p)q (10)
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where q is a 3×1 vector of Lagrange multipliers. The deriv-
ative of F(w) w.r.t. wT is:

∂F(w)
∂wT =

∂
∂wT {rrT −2rXT w+wT XXT w+wT H(p)q}

(11)
where i has been omitted for simplicity. This becomes:

∂F(w)
∂wT =−2rXT +2wT XXT +qT H(p)T (12)

To obtain the minimum we set equation (12) to zero and
obtain:

wT =
1
2
(
2rXT −qT H(p)T )

C−1
x (13)

where Cx = XXT is the covariance matrix of X. If we substi-
tute equation (13) to equation (8) we obtain:

wT H(p) =
1
2
(
2rXT −qT H(p)T )

C−1
x H(p) = 0 (14)

which will give us the Lagrange multipliers q:

qT = 2rXT C−1
x H(p)(H(p)T C−1

x H(p))−1 (15)

Now, we substitute that into equation (13) and we obtain the
full expression for the filter:

wT =
(
rXT −rXT C−1

x H(p)(H(p)T C−1
x H(p))−1H(p)T )

C−1
x

(16)
which splits into two parts; the first part is the solution to
the primary cost function fd(w) and the second part is due to
fc(w):

wT = wT
opt − rXT C−1

x H(p)(H(p)T C−1
x H(p))−1H(p)T C−1

x
(17)

We now proceed to show that if r corresponds to a source
s j, which is uncorrelated with the other sources, and the for-
ward matrix H j is included in the grid search, then w will
be forced to zero. This happens only for the conditions men-
tioned above. Consider the product rXT (ignore the noise for
the moment) which is:

rXT =r
( m

∑
i=1

Himisi
)T

=r
m

∑
i=1

sT
i mT

i HT
i

(18)

So if the sources are uncorrelated then we get:

rXT = rsT
j mT

j HT
j (19)

By substituting that into equation (17) we get:

wT = wT
opt − rsT

j mT
j HT

j C−1
x H(p)(H(p)T C−1

x H(p))−1H(p)T C−1
x

(20)
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Figure 1: Localisation plot for one source uncorrelated with
other sources in a noise free environment. The location num-
ber refers to a geometrical location within the brain.

Now, at some point during the grid search the matrix H(p)
will take the value of H j which will give through equation
(20) the following:

wT =wT
opt − rsT

i mT
i HT

j C−1
x

=wT
opt − rXT C−1

x

=wT
opt −wT

opt = 0

(21)

So, w = 0 only for the location corresponding to the desired
signal. A measure of how close w is to the null vector will
point to the correct location. The procedure is to calculate
equation (17) for all locations obtained from a forward model
and choose the solution with w closest to the null vector. The
closeness measure we use is the norm of w since it reflects
the distance of w to the origin which is the null vector.

4. EXPERIMENTAL RESULTS

In this section we apply the algorithm to a simulated EEG
signal containing a number of ERP components and at the
end we localise the P3a and P3b from real EEG data.

4.1 Simulated EEG
The efficiency of the algorithm is investigated for different
scenarios. We obtain a forward model using the BrainStorm
software [13]. We create seven Gaussian pulses in seven dif-
ferent locations with random orientations, peaking at differ-
ent latencies and we use seven electrodes. We consider sev-
eral different cases in order to evaluate the effect of noise and
correlation between sources. The source we are looking for
is originally placed at location numbered 61. For the simple
case of no noise and uncorrelated sources we get Figure 1
which correctly localises the source. In Figure 2 we show
that even in the case of correlation the source is correctly lo-
calised.

The performance of the algorithm can be affected by the
orientation of the dipole while the other parameters are fixed.
For example, in the previous plot the sources had the same
location, orientation and power for all the cases. What var-
ied, was the noise power and their cross-correlation. The
next case to consider is a statistical performance of the algo-
rithm for various random orientations. We do that because
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Figure 2: Localisation plot for one source 20% correlated
with other sources, for different SNR.The source is correctly
localised for all three cases.
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Figure 3: Histogram of the location for four cases. For the
worst-case scenario (90% correlation 2dB SNR) the algo-
rithm localises the source with 40% accuracy. For 20% cor-
relation and 3dB SNR it localises with 84% accuracy which
is slightly less of the 3dB SNR, uncorrelated case with suc-
cess rate of 90%.

the performance of the algorithm is affected by the dipole
orientation. Figure 3 shows the histogram of estimated lo-
cations for 1000 different dipoles randomly oriented for four
different cases. In Figure 4 we show the succesfull localisa-
tion probability versus the SNR (really high SNR cases are
not shown).

5. CONCLUSIONS

In this paper we developed an algorithm for the localisation
of the P300 subcomponents. We modified the LS approach
where we use a desired signal and a spatial notch filter. The
desired signal is designed based on prior knowledge of the
shape of the P300 subcomponents. The algorithm is in fact
a special kind of beamformer and is a constrained version
of the original LS solution. It points to the correct location
when we have a suitable model of the actual sources and the
sources are uncorrelated. As seen by section IV correlation
between sources and increased noise can degrade the perfor-
mance of the algorithm but even in those cases the algorithm
achieves high localisation accuracy.
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Figure 4: Here we show the probability of correct localisa-
tion for various SNRs. The purpose is to evaluate the per-
formance of the algorithm for different orientation of the
sources. We used the same noise sequence for 1000 different
orientations and various SNR values.
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