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ABSTRACT 

We apply a sparse signal representation approach to impact 

acoustic signals to discriminate between empty and full 

hazelnuts. The impact acoustic signals are recorded by 

dropping the hazelnut shells on a metal plate. The impact 

signal is then approximated within a given error limit by 

choosing codevectors from a special dictionary. This 

dictionary was generated from sub-dictionaries that are 

individually generated for the impact signals corresponding 

to empty and full hazelnut. The number of codevectors 

selected from each sub-dictionary and the approximation 

error within initial codevectors are used as classification 

features and fed to a Linear Discriminant Analysis (LDA). 

We also compare this algorithm with a baseline approach. 

This baseline approach uses features which describe the time 

and frequency characteristics of the given signal that were 

previously used for empty and full hazelnut separation. 

Classification accuracies of 98.3% and 96.8% were achieved 

by the proposed approach and base algorithm respectively. 

The results we obtained show that sparse signal 

representation strategy can be used as an alternative 

classification method for undeveloped hazelnut separation 

with higher accuracies. 

1. INTRODUCTION 

 

Hazelnuts (Corylus avellana) are one of the main 

ingredients used in the chocolate and flavored coffee 

industries. One of the main quality attributes of raw bulk 

hazelnuts is the ratio of kernel weight to shell weight. 

Empty hazelnuts and hazelnuts containing undeveloped 

kernels negatively affect this ratio. If the ratio of kernel 

weight to gross weight is less than 0.5 then some buyers 

reject the produce. Occasionally, a physiological disorder 

such as plant stress from dehydration or lack of nutrients 

causes a hazelnut shell to develop without a kernel. A nut 

with undeveloped kernel appears like a normal hazelnut 

from outside. Currently, raw hazelnuts are processed by an 

“airleg” which is a pneumatic device to separate empty 

hazelnuts from fully developed ones.  However, these 

devices have high classification error rates.  There remains a 

need for more advanced systems to improve upon the 

segregation of empty and full hazelnuts. In addition, empty 

hazelnuts and hazelnuts containing undeveloped kernels 

may also contain the mold Asperguillus flavus that produces 

aflatoxin, a cancer causing material [1]. Therefore, a more 

accurate classification of hazelnuts will enhance food safety. 

In order to detect fully developed hazelnuts from empty 

hazelnuts, one can weigh them one by one or shell them. 

Obviously, this is not an economically viable practice. 

Recently in another area, a high-throughput, low cost 

acoustical system has been developed to separate pistachio 

nuts with closed shells from those with cracked shells [2-4]. 

In this system, pistachio nuts were dropped onto a steel 

plate and the sound of the impact analyzed in real time. 

Pistachio nuts with closed shells produce a different sound 

than those with cracked shells, as expected. The 

classification accuracy of this system is approximately 97%, 

with a throughput rate of approximately 20-40 nuts/second. 

It works reliably in a food processing environment with 

little maintenance or skill required to operate. A similar 

prototype system based on impact acoustics is extended to 

hazelnuts in [5]. It was experimentally observed that the 

algorithms described in [2-4] did not produce high 

classification rates in empty-full hazelnut separation. 

Recently the algorithm introduced in [5] combined Line 

Spectral Frequencies (LSFs); discrete Fourier transforms 

(DFT) and some time domain feature parameters for 

accurate classification of full and empty hazelnuts. 

However, this algorithm uses a large number of features to 

achieve a lower error rate. Also, the time domain modeling 

method which is used by the algorithm has high 

computational complexity.  

The purpose of this study is to explore the effectiveness 

of a sparse signal representation approach, based on the 

Bounded Error Subset selection (BESS) algorithm for the 

classification of empty and full hazelnuts. In particular, we 

are interested in the classification accuracy of the method 

and the number of features selected by it. The BESS 

algorithm aims to describe the signal with the minimal 

number of codevectors selected from a dictionary which is 

specifically designed for classification.  

The paper is organized as follows in the next section we 

describe the data acquisition system to record the impact 

acoustics signals. In sections 3 and 4, we describe the BESS 

and base algorithms used in this area for classification. 
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Figure 1 – (a) Sample hazelnut sound from each class. 

(b) Empty (top 230 rows) and full (bottom 230 rows) hazelnut 

records. Each row represents a record. 

Finally, in section 4 we give experimental results to show 

the efficiency of the proposed approach. 

 

2. MATERIALS AND METHODS 

 

In order to inspect nuts at high throughput rates, a prototype 

system was set up to drop nuts onto a steel plate and process 

the resulting impact acoustic signal.  

An experimental apparatus was fabricated to slide 

hazelnuts down a chute and project them onto an impact 

plate, then collecting the acoustic emissions from the 

impact. The impact plate was a polished block of stainless 

steel with dimensions 7.5 x 15 cm and a depth of 2 cm.  The 

mass of the impact plate was chosen to be much larger than 

the hazelnuts in order to minimize vibrations from the plate 

interfering with acoustic emissions from kernels. A 

microphone, that is sensitive to frequencies up to 20 KHz, 

was used to capture impact sounds. The sound card in a 

typical personal computer was used to digitize and store the 

microphone signals for analysis. For each type of hazelnut 

230 recordings were obtained. Figure 1 shows two 

representative records and available dataset. 

2.1 Bounded Error Subset Selection (BESS) 

 

Sparse signal representations find applications in many 

signal processing areas such as coding, signal restoration, 

direction finding, source localization, and linear inverse 

problems, to name a few. In the subset selection (SS) 

problem, it is required to find the best signal representation 

for a signal vector b using an over complete dictionary 

represented by N-dimensional vectors spanning the column 

space of matrix A. By construction, the number of vectors 

M in the dictionary is such that the matrix A has a 

dimension of MxN. Thus, it is required to find the sparsest 

vector x (with the minimum number of non-zero solution) 

such that Ax = b. It is known that the SS is NP-hard [6]. 

Sparseness is imposed explicitly by minimizing the number 

of non-zero coefficients in the solution vector. The Bounded 

Error Subset Selection (BESS) has been introduced by the 

authors of [7, 8] as a reformulation of the classical subset 

selection problem. It has been shown that by introducing a 

perturbation vector ε
�

 to the signal b, under investigation, 

such that Ax b ε− ≤ , one can obtain a maximally sparse 

representation of the signal from the over complete 

dictionary A. Rather than using a greedy approximation as 

in Matching Pursuit algorithm, in BESS, the sparseness is 

achieved by keeping other alternative approximations to the 

signal. A pseudo code of BESS is given in Box.1 

However, in this study we reformulate the SS problem 

for classification. In particular we use BESS algorithm to 

represent a given signal with minimum number of code 

vectors which are selected from a dictionary that is 

specifically constructed for classification.  

Let us here briefly explain our strategy for constructing 

a discriminant dictionary. From a signal representation 

perspective the sparse signal representation provides a 

solution vector x which gives good compression. Here, we 

organize our dictionary A in such a way where the selection 

of x is biased within A. In particular, we generate A from 

Box:1- Pseudo Code of BESS 

Step-1: Set the number of alternative approximations, k. 

Step-2: Select the best codevector from A to represent 

the signal 

Step-3: Remove that index from the dictionary A and 

find the best alternative codevector to represent the 

signal. Go to Step-2 until desired number of alternatives 

found. 

Step-4: For each alternative codevector index find the 

best combination from the dictionary. 

Step-5: List , Li , all subsets of dictionary vectors to 

produce approximations. Keep the best k subsets that 

provide lower approximation error. 

Step-6: Goto Step-2, add new codevectors until the 

approximation error is above a given threshold. 

Step-7: Return the best subset from Li and corresponding 

of approximation. 
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two different sub-dictionaries which are individually formed 

from signals of each class. By using half of the available 

dataset, we constructed the sub-dictionaries DE for empty 

and DF for full hazelnut classes respectively. These 

dictionaries were estimated from the training data with the 

LBG-Vector Quantization algorithm [9]. These sub-

dictionaries from empty and full classes are merged in A,  

E FA D D= ∪    (1) 

to form a united dictionary. Then, a given test signal that is 

not used in the dictionary generation, is represented by 

BESS by using the code-vectors in A.  

Let si be the test signal. For each signal, we calculate the 
number of code vectors, Vi,j in xi which came from DE and 

DF. We have 

i is Ax=    (2) 

,

,

( ),
i j i J

j E F

V x D
=

= ∈∑   (3) 

where Vi,E and Vi,F are the number of codevectors selected 

from sub dictionaries DE and DF in A while representing the 

signal si. Here we expect that the BESS will be biased 
towards a subdictionary while selecting the codevectors 

from the union dictionary. This bias will be represented by 

ViE-Vi,F. In our experimental studies we observed that the 

approximation error during the selection of the initial code 

vectors is different for empty and full class signals. In 

particular, the approximation error for full hazelnut 

acoustics was larger than for the empty class. We used this 

biased behavior as another feature. Since the number of 

codevectors selected by BESS is signal dependant we 

calculated the approximation error, iε , using the first best 8 

code vectors. Finally we input this three dimensional feature 

vector, which was formed by Vi,j and iε  to a LDA for 

classification. 

 

2.2. Sound Processing 

 

In order to compare the efficiency of BESS algorithm we 

implemented the base line approach introduced in [2]. This 

approach uses time domain modeling, short time windows 

extremum and variance estimation and spectral analysis of 

the signal.   

 

2.2.1 Weibull Parameters 

The Weibull function is used for modeling the many widely 

used curves such as Gaussian, log-normal curve and 

exponential decay. It has the following form 
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           (4) 

 

The hazelnut sound signal is first rectified by taking its 

absolute value. Next it is nonlinearly filtered to smooth the 

curve before the Weibull parameters a, b, c, t0  and  R2 

(mean-square error value) computation. Weibull equation 

parameters are estimated as in [10].  

 

2.2.2 Short Time Variance Window Processing 

In addition to the time domain processing by modeling the 

signals with a Weibull function, variances of the signals are 

also computed in short time windows. The Weibull function 

captures the shape of the recorded signal globally and the 

short-time variance information models the local time 

domain variations in the signal. The short time windows 

were 50 points in duration and incremented in steps of 30 

points so that each window overlapped by 20 points. The 

first window began 50 points in front of the impact. A total 

of eight short time windows were computed to cover the 

entire duration of all signals. After all variances were 

computed, they were normalized by the sum of all eight 

variances as follows: 

,i

ni

k

k

σ
σ

σ
=
∑

       (5) 

where 
2

ni
σ  and 

2

i
σ  are the normalized and computed 

variances from window i with i=1 being the first window 

and i=8 being the last. 

 

2.2.3 Short Time Extrema 

The first 165 samples from the 50th sample before the 

impact sound was divided into 11 non overlapping time 

domain windows and the extremum value of each window 

was selected as a feature value. Extrema in short-time 

windows also capture the envelope of the impact sound 

similar to the variances in short-time windows. 

 

2.2.4 Frequency Domain Processing 

A 256 point DFT was computed from each signal using a 

Hamming window. The 256-point window covers the 

impact sound of the hazelnut. The magnitude of each 

spectra was computed and then low pass filtered using a 20 

tap Finite Impulse Response (FIR) filter was applied to 

remove jagged spikes in the spectra. The low pass filter has 

a cutoff frequency of π/4 in the normalized DFT domain. 

The frequency corresponding to the peak magnitude in the 

frequency spectra was saved as a potential discriminating 

feature. In addition, the 15 magnitude values before the 
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peak and 15 points after the peak were saved and 

normalized by the peak magnitude.  

 

2.2.5 Line Spectral Frequencies 

Linear predictive modeling techniques are widely used in 

various speech coding, synthesis and recognition 

applications [11]. Linear Minimum Mean Square Error 

(LMMSE) prediction based data analysis is equivalent to 

Auto-Regressive (AR) modeling of the data. Line Spectral 

Frequency (LSF) representation of the Linear Prediction 

(LP) filter was introduced by [12] and used in common cell 

phone communication systems including the GSM and 

Mixed Excitation Linear Prediction (MELP) speech coding 

systems, [11]. Here 20 order LSFs are used as feature 
parameters to represent impact sounds. 

 

3. RESULTS 

 

3.1 BESS Results 

In our experimental studies, we used 2 times 2 fold cross 

validation to estimate classification error. Half of the dataset 

is used to calculate 32 code-vectors for each sub-dictionary 

via LBG-VQ [9] algorithm for each class. All records were 

256 samples long. 

Figure 2.a shows the selected codevectors by BESS 

from the dictionary. The first 32 columns of the matrix 

represent the code vectors of DE and the remaining 32 the 

codevectors of DF. The first 230 records correspond to the 

empty hazelnuts and the remaining records correspond to 

the full hazelnuts. As expected, the BESS algorithm selected 

mostly those indices that correspond to a single class. In 

Fig.2.b the scatter plot of the number of codevector and 

approximation error is visualized for both classes. A linear 

decision line was able to discriminate between empty and 

hazelnuts. The described BESS method achieved a 

classification accuracy of 98.3% with only 3 features. In 

particular individual classification accuracies for empty and 

full hazelnuts were 98% and 98.7%. 

 

3.2 Base Approach Results 

Features based on Weibull parameters, short time variances, 

short time extremum, frequency domain processing and 

LSFs are examined. When all 77 features are combined with 

a liner discriminant a classification accuracy of 96.8% is 

obtained. 

 
4. DISCUSSION 

 

We used two different types of signal representation and 

feature extraction strategies. Both algorithms resulted in low 

error rates. The best performance and complexity were 

obtained with the BESS approach. The bias in selecting the 

codevectors from the dictionary and the energy of the 

residual within initial approximations provided very good 

information for classification. In addition by using SS 

approach the classification is implemented with very small 

number of features, compared to the base line method. Here 

the capability of approximating the signal with minimal 

number of error plays an important role. For this problem 

the energy is closely related to the classification 
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Fig.2. (a) The code vectors selected for each signal. First 230 

rows belong to empty and the rest belongs to full hazelnut 

acoustics. The first and second 32 codevectors are generated 

form empty and full hazelnut training sets. (b) The scatter plot of 

approximation error versus to the difference between the 

numbers of selected vectors from each sub dictionary. 
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performance. However one should also notice that the 

energy may not always represent discriminant information. 
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