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ABSTRACT

In many detection applications, the main performance dote
is the Signal to Interference plus Noise Ratio (SINR). Afterar
filtering, the optimal SINR corresponds to the maximum vafue
Rayleigh quotient, which can be interpreted as the largesiegal-
ized eigenvalue of two covariance matrices. In this papemextend
the Szegod's theorem for the generalized eigenvalues ahitlen
block Toeplitz matrices derived under the assumption oblaibely
summable sequences. Then, we apply this result to widelpaocd-s
time beamforming performance analysis where the optimiaRSI
can be interpreted as the largest generalized eigenvalweebddck
Toeplitz matrices’ pair. We show that the optimal spacestiBiNR
converges to an upper bound that can be interpreted as amapti
zero-bandwidth spatial SINR and interpret this result feveral
jamming scenarios.

1. INTRODUCTION

In many detection applications, such as radar and sonamé#ie
performance criterion is the Signal to Interference plussidratio
(SINR). If a linear filter is applied to data, the SINR corresgds to
a Rayleigh quotient, associated with the covariance nestrit the
signal and interference plus noise components. In manyicappl
tions, those matrices may be structured. For instancegicdise of
temporal filtering, if the data are modelled by stationamygasses,
they will be Toeplitz structured. Another example is theeca$
space-time filtering where the two matrices are block Taeeptruc-
tured.

In this paper, we study the problem of the influence of therfilte

order on the optimal SINR. More specifically, we considerc¢hse
of block Toeplitz matrices. Because the optimal SINR cqrogsls
to the maximum value of a Rayleigh quotient, it can be intetqut
as the largest generalized eigenvalue of both matricesreldre,
the problem of the influence of the filter order on the SINR @sely
related to the generalized eigenvalue problem which habgtbest
of our knowledge, received little attention in the signabgess-
ing literature. In numerical analysis, a similar problenaldewith
the analysis of the behavior of the eigenvalues of a pretioneid
matrix. For this problem, results about the asymptotic bigheof
the eigenvalues of block Toeplitz matrices have been déf®e3].
They extend the celebrated result given by Szegd [4], whgserts
that the eigenvalues of a sequence of Hermitian Toeplitzicest
asymptotically behave like the samples of the Fourier fians of
its entries. However, the analyses have been performedeyfiee-
phisticated mathematics under the general hypothesisiiadiock
matrices are generated by square summable elements.

Here, we propose to extend the Szegd’s theorem to the gen

alized eigenvalues of block Toeplitz matrices, under thpotiye-
sis of absolutely summable elements. This extension reliethe
asymptotic equivalence of matrix sequences establish&sray in
[5]. Then, we apply this theorem to the performance analyfike
maximal SINR space-time (or tapped delay line) widebandrbea
former (e.g., see [6, Chap. 6.13]). We derive the expressidhe
asymptotic optimal space-time SINR w.r.t. the number oftapd
show that it can outperform the optimal associated zerahvaith

spatial SINR. This result is illustrated by numerical siatidns, as
well as the convergence to the asymptotic SINR with a finitenu
ber of taps. We may note that many authors have studied tharper
mance of wideband beamformers, using time domain or fregyuen
domain implementations. However, to the best of our knogéed
they have considered different weight optimization ciétgsuch as
the Minimum Mean Square Error (MMSE) or Minimum Variance
with Distortionless Response (MVDR) (e.g., see [7, 8]). &er,
most analyses have been done through numerical simulggoms
see [7, 9]) and few analytical results exist. Furthermdneytwere
performed for particular cases of arrays with a limited nemobf
sensors (e.g., see [8]). Contrary to the previous studigsagymp-
totic approach allows us to consider arbitrary arrays withagbi-
trary number of sensors.

2. GENERALIZED EIGENVALUE PROBLEM

In this section, we review the generalized eigenvalue prband
provide some insights into two cases appearing frequenttygnal
processing applications.

2.1 Stationary points of Rayleigh quotient

Given twon x n Hermitian matricesA, B and an(n x 1) vector

w, with B positive definite, the Rayleigh quotient is defined as the
ratio

_ wHAw
~ wHBw’

r(w) (1)
This ratio is closely related to the generalized eigenvalabdlem.
Its stationary points can be interpreted as the generaéiggghvec-
tors of the matricedA andB. Indeed, by taking the complex gradi-
ent of (1) w.r.t.w and setting the result to zero, we obtain

Aw =r(w)Bw

which is the expression of a generalized eigenproblem. éfbes,
the stationary pointsv and stationary valuegw) of the Rayleigh
guotient are, respectively, the generalized eigenvectndseigen-
valuesA (A, B) of the corresponding generalized eigenproblem.
Moreover, sinceB is positive definite, the previous expression is

equivalent to BlAw = r(w)w

and the generalized eigenvectors and eigenvalued aind B
respectively, correspond to the eigenvectors and eigeesabf

B A ie,A(A,B)=A(B71A).

eg_.z Toeplitz and block Toeplitz case

Applied to statistics, the matrices andB can be interpreted as the
covariance matrices of stochastic processes and thetdémitian
positive semidefinite. Very frequently, stochastic preessare the
sum of two zero-mean stochastic processes : the procestenésh
and the noise process of covariance matriéesndB respectively.

In this case, the Rayleigh quotient (1) can be interpretel SNR
after application of a linear filter to the stochastic preess In
this situationB is almost always positive definite and a question of
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interest is the maximization of this quotient (1) for diéet orders  whereUpm = Im® Up is an nmx nm unitary matrix independent of

of the linear filter. Anm with Up, the unitary discrete Fourier transform (DFT) matrix
Two significant particular cases can be developed, depgndinand whereAn(a) is the following matrix:

on the properties of the processes and the sampling. Rirshei

case of a temporal periodic sampling of stationary proeste

covariance matrices are Toeplitz. Next, in the case of sfiame Dp(@l) Dp(a?) ... Dp@@Mm
sampling, the matrices are block Toeplitz if the samplindeoris def Dn(aZl) Dn(a2,~2) Dn(azsm)
spatial then temporal or Toeplitz block otherwise (i.e. penal then An(a) = . . .
spatial). In the following, we restrict ourselves to the geized : : :
eigenvalue analysis of the latter kind of matrices. Dp(@™1) Dp@™2) ... Dp@@™m

3. ASYMPTOTIC GENERALIZED EIGENVALUE
DISTRIBUTION OF BLOCK TOEPLITZ MATRICES

The aim of this Section is to extend Szegd'’s theorem [4] éocse
of the generalized eigenvalues of block Toeplitz matriaesen the
hypothesis that the elements generating the matrices acduably
summable. For this purpose, we start by explaining notatamd
recall previous results useful for the proof of this theor@heorem  After having recalled useful previous results, we now give he-

whereDp(aV) are diagonal matrices with theitk entry given by
(Dn(@)) = at (21,

3.2 Asymptotic generalized eigenvalue distribution of blok
Toeplitz matrices

1). orem 1 the extension of Szegd’s theorem to the generaliggmhe
values of block Toeplitz matrices. First, we detail thremmeas
3.1 Notations and previous results (Lemma 2-4) used in the proof of the theorem. The three lemmas

Depending on the order the data are written, the matriceshean a'€ Proved in [11] as well as Theorem 1.

block Toeplitz or Toeplitz block structured for which it igrgight- s o .
forward to prove that the associated pairs share the sanerajen Lemma 2 Let Anm be a Hermitian matrix W'th Toeplitz blocks
ized eigenvalues. However, the formulation of Toeplitlilis pre- ~ 9enerated by an absolutely summable sequéagé}k:...,fl,o.l,...'
ferred as it allows one to handle Toeplitz block for which Lram1 For all arbitrary eigenvalues\ (A m) of Apm we have

will apply. Thus, letAn m denote a Hermitian Toeplitz block matrix

andB m a Hermitian, positive definite Toeplitz block matrix with minA (A(w)) <A(Anm) < TSXA (A(w)).
Ayt AV L ART
A%t AZ2%2 . AT Considering now a positive definite Hermitian block Toeplita-
Anm=| . ) ) trix, the following lemma is proved.
Ar'n.,1 A§n,2 Ariq,m Lemma3 Let Bnm be a positive definite Hermitian ma-
n noo n trix W|th Toeplitz blocks and absolutely summable sequence
where(AH’V) u—1.mv_1.m denoten x n Toeplitz matrices given by {b } 104, and the associated asymptotically equivalent
uv uv uv matrix Cn(b) given by Lemma 1. lining, , A {B(w)} =my > 0,
=N a’; ... a7<n71) then
u,v QU Br?.,rln““ Cﬁl(b)-
AW | A ~(n-2) @)

: . : Then we also prove in [11] the following lemma used in the proo
v, ayy, .. ag’ of Theorem 1.

Where{ M _10.1,.. are absolutely summable infinite complex Lemma 4 With the assumptions of Lemma 3Aif m is a Hermitian
sequences which guarantees the existence of the assaippe- ~ Matrix with Toeplitz blocks generated by an absolutely sabien
riodic Fourier transforma"(w) = yyay e k?. Finally, we in- sequence[ak }=...~104,.., the associated matrice€n(a) and
troduce the spectral matrix of elements(w)]yy = a*V(w),uv=  Cn(b) given by Lemma 1 satlsfy

1...m. These notations extend to the Toeplitz block matrBagn. B 1 Anm~ C1(b)Cn(a)
To study the asymptotic behavior of sequences of matriees, t n,m-n,m n e
norms have been introduced in [5]. They are the spectral njofm
and the normalized Frobenius notr‘n Finally, we introduce the interval I =
2defl & [ming, , A (B~ (w) A (w)),max, , A (B~ (w)A(w))] and
| An| 21 z &, J‘ prove the following.

Theorem 1 Let Anm and Bnym be two Hermitian matrices

Both norms are used for the definition of asymptotic equivede with Toeplitz blocks. such thaBn, is positive definite. gen-

given in [5]: v

Definition: Two matrix sequencegAn} and {Bn}, n=  erated by absolutely summable sequenfa$ Jee._101,.20d
1,2,... are said to be asymptotically equivaleAt, ~ By, if {bz’v}kz...,fl,o,l,...’ respectively, witming, , A {B(w)} =m, > 0.
1. 3M < e such thatn, [[An[| <M and|[Bn| <M Then, for all continuous functions F op |
2. ||mn*>oo |An - Bn| = O
We now recall a lemma about block Toeplitz matrices [10] thiit LY
be useful in the following: ,Hw ng zF (A(Anm,Bnm)) / ,TZlF (Au(A B(w))dw

u

Lemma 1 For all absolutely summable sequences
{8"}k=..~101..., there exists a sequence of matricSn(a)} As shown in [5, 12] and combined with the fact that, for all
asymptotically equwalent tPAnm} and given by n, the eigenvalues aB 1 Anm lie in I, Theorem 1 leads to the

Cn(a) = U} 7/n(@)Unm following corollary [11]:
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Corollary 1 For any integer |, the smallest and the largest | gener- 4.2 Expression of the space-time covariance matrices
alized eigenvalues ¢fAnm, Bnm) are convergent in n and

The jamming+noise and target signal covariance matriesgpec-

A@w}\mmHl(An.man,m) = mai)n)\m(A(wLB(w)) tively Ry andRgy are of dimensiofNM x NM. Due to the sta-
tionarity of the processes, the space-time covarianceiceatare
and block-Toeplitz structured and may be written as:
1im A (Anm Bom) = maxda (A (), B(w). Ro R{ - Ry,
. . H
Roo o R ®

4. APPLICATION TO SPACE-TIME BEAMFORMING

Beamforming consists of spatially filtering signals, anidwas one . Rn-1 Rn2 -0 Ro
to form “nulls” in the direction of interfering sources whiimain- ~ with
taining a given gain in a desired direction. Usually, sigreale nar-

rowband and spatial processing alone is sufficient. Howevieen 313 H a? _iomiT
signals are wideband, spatial beamforming performanceadeg ~ Rn= zyi(f)(P(ejv f+fo)@(6;, f+fo) +EI € df
(see, e.g, [6, Chap. 6.13]). Some sort of frequency compiensa I

is then required to keep good nulling performance. This can b gng

achieved by either time-domain or frequency-domain imgeta- s

tions, whose performance depend on the signal and intederen- _ /? H —i2mfT
vironments. In this work, we consider the time-domain innpéa- Ra -8 Z5(1)9(6s, T+ fo)9(6s, T+ fo) e df
tation, using tapped delay lines (see, e.g., [9]). This empintation withn=0,...,N -1, for Ry andRSN respectively. Let note that

has been studied by many authors through numerical sironkati e ; . -
[7, 9] for different weight optimization criteria. Howeveto the the blocks are not necessarily Toeplitz, depending on thetstre

best of our knowledge, few analytical results exist in theecaf the ~ Of the array. After introducingo = 27tfT andwy = 273%1-’ tt:u_esFe
maximal SINR beamformer. Unlike the previous studies, qur a two space-time covariance matrices are generated by theefFou

proach is asymptotic but can be applied for an arbitraryyawih coefficients of theM x M Hermitian matrix valued functions:
an arbitrary number of sensors. 3

As in [6], we assume that the output of each sensor has beeR(w):{ zj:lyi
quadrature demodulated and that the tap spacing is lessitiegual 0
to the Nyquist sampling rat% = BwhereBiis the bandwidth of the and
signals. After recalling the expression of space-time dawae ma-

(@) @;(w)@; (W) +031 for |w| < MBT
formBT <|w| <t

H
trices, we show that the optimal space-time SINR can bepreezd Rs(w) = { Ss(w) ps(w) ps(w)™  for |w| < nBT )
as the maximum generalized eigenvalue of a block-Toepléatrim 0 for BT < |w| <7
pair. Then, using Theorem 1 and Corollary 1, we study the asym def def

; . 0el 1 v _w def 1 w <
totic performance in terms of space-time beamforming SINR{( with .75 (@) = +71(znr ) 75(0) = +55(znr). @5(w) =
the number of taps). Finally, we analyze the influence of tifte d (p(el-, ‘%*T%b) and g (w) d:ef(p(es ‘%;%b)
ferent implementation parameters and illustrate the teshatough
numerical examples. 4.3 Asymptotic performance analysis

4.3.1 Arbitrary jammers
4.1 Problem statement

) Space-time beamforming consists in linearly filtering tlagadby a
Let consider an array composed Mf sensors. We denot® the  tap.stacked vector. We denote the filtex;, whenN taps are used.
bandwidth of the signals around the center frequeficyThen, we | this work, we consider the maximal SINR filter optimizaticri-
consider an environment composed of a field of jammers, taerm terjon. The optimal space-time processing (in the sensdNMRS
noise and a target signal. The jammers and the thermal n@se amaximization) maximizes the generalized Rayleigh quatien
modelled by non-zero bandwidth stationary processes atidefu
more the thermal noise is spatially white, with poveg. The base- def ___ WHRsnwN
band jammers have powéajz)jzl__J and power spectral density SINR(N) =
(PSD) (-#j(f))j=1.9. The jamming+noiséM x M spatial covari- _ _ ) ) .
ance matrix is equal to: whereRgn andRy are the space-time covariance matrices for the
target and jamming+noise signals, respectively, and gie(3).
B 3 As noteq_in Sect_ié)nf_z_.ZRSNd ?_lnd R_N_ are, r(_e$pec(;ti\;ely, I-!ermi-
5_ [2 s ) ) H 2 tian positive semidefinite and Hermitian positive definitatrices.
R= /7% leyj(f)(l’(ep f+fo)@(6;, f+ fo)"df + 071 Therefore, the solution of this optimization problem isegivby the
principal generalized eigenvector of these two matricegquiva-
with @(6;, f + fo) = [ olkeTi(6)  oikeli(6) .. glkeli(8) ]T lently WN a Q’(RglRSN) where,@(.) stands for Fhe eigenvec_:tor
- - associated with the largest eigenvalue of a matrix. The pfiti-
where (rm)m-1.m denotes a vector pointing from an origin to the mal space-time SINR is given by the largest generalizeche@jae
mi" array,i(6;) a unit length arrival vector for a jammer in the di- of Rgy andRy. Noting that the space-time setting with taps
rection 9] andk = ZTTTch[—) Wlth C den0t|ng the Celenty Of the wave. is a Specia| case Of a processor th.l_ 1 taps' Where thN + 1st
The target signal is also modelled by a non-zero bandwidiiiost-  tap weight is set to zero in each channel, we obtain by thesincl
ary process with PSD/g(f) and powero'é. It is assumed to have a sion principle in (4) that the SINR is an increasing functadrthe
known DOABs. ItsM x M spatial covariance matrix may be written number of taps.
as We consider in the following the limit of the SINR w.r.tN
for arbitrary given jammer and target DOAs. In the case where
_ 8 H T= %, the assumptions of Theorem 1 and Corollary 1 apply for the
RS:/ . s(F)o(6s, f + fo)@(6s, f + fo)"d f. sequence of the space-time covariance matrigesy, Rn) W.r.t.
T2 the number of taps: '

4)

wN WH Rywn
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hIlim SINR(N) =
where

J 2
R(f) = 7 (1) @(6).f+fo) @(6). f+fo)" +
=1

On
—I
B

®)

and
Rs(f) = #5(f) @ (s, T+ fo) 9(6s, f + o).

Then, sinceR~1(f)Rg(f) has rank one, it has a single non-zero

eigenvalue

Fs(£) (65, f+fo) " R (F)o(6s, F + fo)
and we obtain the following result:

Result 1 For optimal space-time beamforming sampled at the
Nyquist rate, the SINR tends to the maximal zero-bandwigtimal
spatial SINR associated with a frequency in the banet [ 5; 5]
when the number of taps increases4o

Jim SINR(N) =max{.75(f) 9 (65, f + fo) R ()¢ (6s.f + fo)}
—00 Ef

(6)
with R(f) given by (5).

Let note that the asymptotic (in the number of taps) spane-ti
SINR (6) can be interpreted as the maximal zero-bandwidth op
mal (in the sense of SINR maximization) spatial SINR w.rre- f
quency in the bandis. Consequently, it has the same behavior as
an infinitely narrow bandpass filter (at the frequency sohlutif the
maximization (6)) followed by a zero-bandwidth adaptiveaive
former. Therefore, it can outperform the zero-bandwidthiropl
spatial SINR which corresponds to the frequeriicy 0.

In the casel < %, the spectral matriceRs(w) andR(w) are
bandlimited to[— BT, mBT], so min, ,A(R(w)) = 0 and the as-
sumptions and the statements of Theorem 1 and Corollary dcare
longer valid. Extension of Corollary 1 in the subbaraBT, BT|
is thus challenging. However, extensive numerical expenits
show that Result 1 extends to that case (see Subsection.4.4.1

In the following, we suppose that the signal is white so that

2
() = 5'B§ We now analyze the particular situation of jammers
whose spectra cancel at least at a common frequency.
4.3.2 Jammers whose spectra cancel at least at a common fr
quency
In this particular case, we obtain the following result:
Result 2 In the presence of several jammers whose spectra canc
at least at a common frequency and a white signal, we have

2

O
Jim SINR(N) = —SM.

ag

4.4.1 White jammer case

In this Section, we suppose that the jammer is white in thelban
[-3:3). . . :
Infﬁuence of the time sampling frequencyNow, we examine the
influence of the time sampling rate on the optimal space-8hiNR.

In Fig.1, we plot the optimal space-time SINR for two valuéthe
temporal sampling period, i.eT = § andT = 45 and different
values of the number of taps. First, we observe that in bosesa
the SINR seems to converge to the asymptotic SINR given bylRes
1, although this result has been proved onlyTet %. However, we

note that the convergence is much fasterfee T]B than forT = %.
Consequently, oversampling w.r.t. the Nyquist samplirig edlows
one to improve the performance for a given number of taps. St n
that extensive experiment confirms these observationsud.aebte
that the influence of the time sampling rate has been analyred
[8] for a bandpass tapped delay line implementation of the SV
algorithm in the case of a two-sensor array. In this paperhae
also noticed the improvement of performance in terms of SthR
to the use of oversampling, for an array in which each elerhast
only two weights. The physical interpretation is that oaenpling
increases the correlation between interference compsnehich
makes their nulling easier.

15

10

o

N=1

l
(4]

N=2, T=1/B

SINR (dB)
A A
(4] o [4,] o

I
w
o

0.1

0.2

0.25
us—sm(e

0.4

0.5

-35

0 0.05 0.15 03 035 0.45

s)

Fig.1: Optimal space-time SINR wiffii = £ (- -) andT = 4 (-+-) for
different values of the number of taps, as a function of tingetes DOA.

?rlﬁluence of the spatial sampling frequencyNow, we examine

the influence of the inter-sensor spacing equaﬁo(see (7). In

order to respect the Shannon sampling condition, the paearfie
must be at least equal to the maximum frequency of the sigeal,

This result means that in the presence of jammers with at least, = f, + 5. This corresponds to an inter-element spacing less than

one common zero in their spectrum, space-time processiogsl
one to reach asymptotically the SINR corresponding to a jaram
free context. Let note that though the asymptotic notionuiely
theoretical, we will see in Subsection 4.4.2 that in mostiical
cases, a small number of taps is sufficient to reach near aptim
performance.

4.4 |llustrative examples

We now illustrate Results 1 and 2 through numerical expatisie
We consider throughout this section a uniform linear artdiz4)
with only one jammer where

00,1 =] 1 mi @

with u=sin(0) (us = sin(6s) anduy = sin(H;) for the target signal
and the jammer respectively) and whedtedepends on the choice
of the inter-element spacing. The parameters of the simoualare

£ =03,M=16,u; =0.3, 07 = 30 dB andoZ = 0 dB.
0

QM-Drtu }

©2007 EURASIP
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or equal t02<f—°+B—). However, in some practical cases, the array
ot3

may not be required to steer the entire visible region, i.@’ &

6 <90°. Therefore, a greater inter-element spacing can bavatlp
at the price of a reduced detection domain. Indeed, not ctisige
the Shannon sampling condition leads to the occurence tihgra
lobes at some frequencies, but they can be kept out of thieleisi
region if the array steering domain is sufficiently limiteg] [Chap.
2.5]. Here, we analyze the influencefgfon the asymptotic optimal
space-time SINR. More precisely, we compare the choidg ef fg
with the sampling frequencyfy, = fo+% for which the Shan-
non sampling condition is respected. To compare both cersid
cases, we plot in Fig.2 the ratio between the optimal zeraidth
spatial SINR SINRg = 02¢(6s, fo) "R~1¢(6s, fo) with R =
a2(63, fo)p(63, fo)™ + 021 and the asymptotic optimal space-
time SINR forfy = fgandfy, = fo+ %. First, we observe that the
two plots are upper-bounded by 1. The asymptotic optimatespa
time filter outperforms the optimal spatial filter for arlaity given

EUSIPCO, Poznan 2007
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jammer and target DOAs. Then, we note that for a target ingelar

vicinity of the jammer, the asymptotic optimal space-timé&lS

with fg = fy is greater than withfy = fg+ % while the behavior of

this asymptotic space-time SINR does not degrade significtor
a target “far” from the jammer. Consequently, the chofge= fg
improves the performance w.r.t. the Shannon sampling &equ

O/ \\\ \ Y //
\X\”\ \ l / /f/\/
-0.2+ \\ i //
Lo
—0.4} f =fs+B/2 \ i /

SINR ratio (dB)
S
(2]
T

—12F

i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
uS=5in(GS)

-14

Fig.2: Ratio between the optimal spatial SINR and the asgtigpoptimal
space-time SINR for two inter-sensor spacings, as a fumctighe target's
DOA.

4.4.2 Bandlimited jammer case
Let suppose that the jammer has constant PSD in the pagp3]

with b < B. Note that in this caséR (w) remains nonsingular and

thus Result 2 applies. Here, we illustrate the speed of eganee

of the optimal space-time SINR for a given number of taps & th

asymptotic upper-bound given by Result 2. Thus, we plot gsBi
and 4 the optimal space-time SINRs foe= 2B andb = § respec-
tively (dashed plots) at given numbers of taps and compama to
the asymptotic optimal space-time SINR (solid plot). Letentiat

101

SINR (dB)

-5}

-10F

-15F

-20 i i i i i i i i i i
0 005 01 015 02 025 03 035 04 045 05
uS:sm(SS)

Fig.4: Optimal space-time SINR for different values of thember of taps,
as a function of the target’s DOA fdr= %.

For instance, we observe in Fig.4 (whdre= %) that the optimal
space-time SINR witlN = 4 taps outperforms the optimal space-

time SINR withN = 8 taps of Fig.3 (where = 3B).
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