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ABSTRACT
In many detection applications, the main performance criterion

is the Signal to Interference plus Noise Ratio (SINR). Afterlinear
filtering, the optimal SINR corresponds to the maximum valueof a
Rayleigh quotient, which can be interpreted as the largest general-
ized eigenvalue of two covariance matrices. In this paper, we extend
the Szegö’s theorem for the generalized eigenvalues of Hermitian
block Toeplitz matrices derived under the assumption of absolutely
summable sequences. Then, we apply this result to wideband space-
time beamforming performance analysis where the optimal SINR
can be interpreted as the largest generalized eigenvalue ofa block
Toeplitz matrices’ pair. We show that the optimal space-time SINR
converges to an upper bound that can be interpreted as an optimal
zero-bandwidth spatial SINR and interpret this result for several
jamming scenarios.

1. INTRODUCTION

In many detection applications, such as radar and sonar, themain
performance criterion is the Signal to Interference plus Noise Ratio
(SINR). If a linear filter is applied to data, the SINR corresponds to
a Rayleigh quotient, associated with the covariance matrices of the
signal and interference plus noise components. In many applica-
tions, those matrices may be structured. For instance, in the case of
temporal filtering, if the data are modelled by stationary processes,
they will be Toeplitz structured. Another example is the case of
space-time filtering where the two matrices are block Toeplitz struc-
tured.

In this paper, we study the problem of the influence of the filter
order on the optimal SINR. More specifically, we consider thecase
of block Toeplitz matrices. Because the optimal SINR corresponds
to the maximum value of a Rayleigh quotient, it can be interpreted
as the largest generalized eigenvalue of both matrices. Therefore,
the problem of the influence of the filter order on the SINR is closely
related to the generalized eigenvalue problem which has, tothe best
of our knowledge, received little attention in the signal process-
ing literature. In numerical analysis, a similar problem deals with
the analysis of the behavior of the eigenvalues of a preconditioned
matrix. For this problem, results about the asymptotic behavior of
the eigenvalues of block Toeplitz matrices have been derived [2, 3].
They extend the celebrated result given by Szegö [4], whichasserts
that the eigenvalues of a sequence of Hermitian Toeplitz matrices
asymptotically behave like the samples of the Fourier transform of
its entries. However, the analyses have been performed by use of so-
phisticated mathematics under the general hypothesis thatthe block
matrices are generated by square summable elements.

Here, we propose to extend the Szegö’s theorem to the gener-
alized eigenvalues of block Toeplitz matrices, under the hypothe-
sis of absolutely summable elements. This extension relieson the
asymptotic equivalence of matrix sequences established byGray in
[5]. Then, we apply this theorem to the performance analysisof the
maximal SINR space-time (or tapped delay line) wideband beam-
former (e.g., see [6, Chap. 6.13]). We derive the expressionof the
asymptotic optimal space-time SINR w.r.t. the number of taps and
show that it can outperform the optimal associated zero-bandwidth

spatial SINR. This result is illustrated by numerical simulations, as
well as the convergence to the asymptotic SINR with a finite num-
ber of taps. We may note that many authors have studied the perfor-
mance of wideband beamformers, using time domain or frequency
domain implementations. However, to the best of our knowledge,
they have considered different weight optimization criteria, such as
the Minimum Mean Square Error (MMSE) or Minimum Variance
with Distortionless Response (MVDR) (e.g., see [7, 8]). Moreover,
most analyses have been done through numerical simulations(e.g.,
see [7, 9]) and few analytical results exist. Furthermore, they were
performed for particular cases of arrays with a limited number of
sensors (e.g., see [8]). Contrary to the previous studies, our asymp-
totic approach allows us to consider arbitrary arrays with an arbi-
trary number of sensors.

2. GENERALIZED EIGENVALUE PROBLEM

In this section, we review the generalized eigenvalue problem and
provide some insights into two cases appearing frequently in signal
processing applications.

2.1 Stationary points of Rayleigh quotient

Given twon× n Hermitian matricesA, B and an(n× 1) vector
w, with B positive definite, the Rayleigh quotient is defined as the
ratio

r(w) =
w

H
Aw

wHBw
. (1)

This ratio is closely related to the generalized eigenvalueproblem.
Its stationary points can be interpreted as the generalizedeigenvec-
tors of the matricesA andB. Indeed, by taking the complex gradi-
ent of (1) w.r.t.w and setting the result to zero, we obtain

Aw = r(w)Bw

which is the expression of a generalized eigenproblem. Therefore,
the stationary pointsw and stationary valuesr(w) of the Rayleigh
quotient are, respectively, the generalized eigenvectorsand eigen-
valuesλ (A,B) of the corresponding generalized eigenproblem.
Moreover, sinceB is positive definite, the previous expression is
equivalent to

B
−1

Aw = r(w)w

and the generalized eigenvectors and eigenvalues ofA and B

respectively, correspond to the eigenvectors and eigenvalues of
B

−1
A, i.e.,λ (A,B) = λ (B−1

A).

2.2 Toeplitz and block Toeplitz case

Applied to statistics, the matricesA andB can be interpreted as the
covariance matrices of stochastic processes and thereforeHermitian
positive semidefinite. Very frequently, stochastic processes are the
sum of two zero-mean stochastic processes : the process of interest
and the noise process of covariance matricesA andB respectively.
In this case, the Rayleigh quotient (1) can be interpreted asa SINR
after application of a linear filter to the stochastic processes. In
this situationB is almost always positive definite and a question of
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interest is the maximization of this quotient (1) for different orders
of the linear filter.

Two significant particular cases can be developed, depending
on the properties of the processes and the sampling. First, in the
case of a temporal periodic sampling of stationary processes, the
covariance matrices are Toeplitz. Next, in the case of space-time
sampling, the matrices are block Toeplitz if the sampling order is
spatial then temporal or Toeplitz block otherwise (i.e. temporal then
spatial). In the following, we restrict ourselves to the generalized
eigenvalue analysis of the latter kind of matrices.

3. ASYMPTOTIC GENERALIZED EIGENVALUE
DISTRIBUTION OF BLOCK TOEPLITZ MATRICES

The aim of this Section is to extend Szegö’s theorem [4] to the case
of the generalized eigenvalues of block Toeplitz matrices under the
hypothesis that the elements generating the matrices are absolutely
summable. For this purpose, we start by explaining notations and
recall previous results useful for the proof of this theorem(Theorem
1).

3.1 Notations and previous results

Depending on the order the data are written, the matrices canbe
block Toeplitz or Toeplitz block structured for which it is straight-
forward to prove that the associated pairs share the same general-
ized eigenvalues. However, the formulation of Toeplitz block is pre-
ferred as it allows one to handle Toeplitz block for which Lemma 1
will apply. Thus, letAn,m denote a Hermitian Toeplitz block matrix
andBn,m a Hermitian, positive definite Toeplitz block matrix with

An,m =













A
1,1
n A

1,2
n . . . A

1,m
n

A
2,1
n A

2,2
n . . . A

2,m
n

...
...

...
A

m,1
n A

m,2
n . . . A

m,m
n













where
(

A
u,v
n

)

u=1..m,v=1..m denoten×n Toeplitz matrices given by

A
u,v
n =















au,v
0 au,v

−1 . . . au,v
−(n−1)

au,v
1

. . .
.. . au,v

−(n−2)
...

. . .
...

au,v
n−1 au,v

n−2 . . . au,v
0















(2)

where{au,v
k }k=...,−1,0,1,... are absolutely summable infinite complex

sequences, which guarantees the existence of the associated 2π pe-
riodic Fourier transformau,v(ω) = ∑k au,v

k e−ikω . Finally, we in-
troduce the spectral matrix of elements[A(ω)]u,v = au,v(ω),u,v =
1...m. These notations extend to the Toeplitz block matricesBn,m.

To study the asymptotic behavior of sequences of matrices, two
norms have been introduced in [5]. They are the spectral norm‖.‖
and the normalized Frobenius norm|.|

|An|
2 def

=
1
n

n

∑
i=1

n

∑
j=1

∣

∣ai, j
∣

∣

2
.

Both norms are used for the definition of asymptotic equivalence
given in [5]:

Definition: Two matrix sequences{An} and {Bn}, n =
1,2, . . . are said to be asymptotically equivalent,An ∼ Bn if
1. ∃M < ∞ such that∀n, ‖An‖ ≤ M and‖Bn‖ ≤ M
2. limn→∞ |An−Bn| = 0.
We now recall a lemma about block Toeplitz matrices [10] thatwill
be useful in the following:

Lemma 1 For all absolutely summable sequences
{au,v

k }k=...,−1,0,1,..., there exists a sequence of matrices{Cn(a)}
asymptotically equivalent to{An,m} and given by

Cn(a) = U
H
n,m∆n(a)Un,m

whereUn,m = Im⊗Un is an nm×nm unitary matrix independent of
An,m with Un the unitary discrete Fourier transform (DFT) matrix
and where∆n(a) is the following matrix:

∆n(a)
de f
=











Dn(a1,1) Dn(a1,2) · · · Dn(a1,m)
Dn(a2,1) Dn(a2,2) . . . Dn(a2,m)

...
...

...
Dn(am,1) Dn(am,2) · · · Dn(am,m)











whereDn(au,v) are diagonal matrices with their kth entry given by

(Dn(au,v))k,k = au,v
(

2π(k−1)
n

)

.

3.2 Asymptotic generalized eigenvalue distribution of block
Toeplitz matrices

After having recalled useful previous results, we now give in The-
orem 1 the extension of Szegö’s theorem to the generalized eigen-
values of block Toeplitz matrices. First, we detail three lemmas
(Lemma 2-4) used in the proof of the theorem. The three lemmas
are proved in [11] as well as Theorem 1.

Lemma 2 Let An,m be a Hermitian matrix with Toeplitz blocks
generated by an absolutely summable sequence

{

au,v
k

}

k=...,−1,0,1,...
.

For all arbitrary eigenvaluesλ (An,m) of An,m we have

min
ω ,λ

λ (A(ω)) ≤ λ (An,m) ≤ max
ω ,λ

λ (A(ω)) .

Considering now a positive definite Hermitian block Toeplitz ma-
trix, the following lemma is proved.

Lemma 3 Let Bn,m be a positive definite Hermitian ma-
trix with Toeplitz blocks and absolutely summable sequences
{

bu,v
k

}

k=...,−1,0,1,...
and the associated asymptotically equivalent

matrix Cn(b) given by Lemma 1. If,minω ,λ λ {B(ω)} = mb > 0,
then

B
−1
n,m ∼ C

−1
n (b).

Then we also prove in [11] the following lemma used in the proof
of Theorem 1.

Lemma 4 With the assumptions of Lemma 3, ifAn,m is a Hermitian
matrix with Toeplitz blocks generated by an absolutely summable
sequence{au,v

k }k=...,−1,0,1,..., the associated matricesCn(a) and
Cn(b) given by Lemma 1 satisfy

B
−1
n,mAn,m ∼C

−1
n (b)Cn(a).

Finally, we introduce the interval Iω =
[minω ,λ λ (B−1(ω)A(ω)),maxω ,λ λ (B−1(ω)A(ω))] and
prove the following.

Theorem 1 Let An,m and Bn,m be two Hermitian matrices
with Toeplitz blocks, such thatBn,m is positive definite, gen-
erated by absolutely summable sequences

{

au,v
k

}

k=...,−1,0,1,...
and

{

bu,v
k

}

k=...,−1,0,1,...
, respectively, withminω ,λ λ {B(ω)} = mb > 0.

Then, for all continuous functions F on Iω

lim
n→∞

1
n

mn

∑
k=1

F(λk(An,m,Bn,m))=
1

2π

∫ π

−π

m

∑
u=1

F(λu(A(ω),B(ω))dω

As shown in [5, 12], and combined with the fact that, for all
n, the eigenvalues ofB−1

n,mAn,m lie in Iω , Theorem 1 leads to the
following corollary [11]:
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Corollary 1 For any integer l, the smallest and the largest l gener-
alized eigenvalues of(An,m,Bn,m) are convergent in n and

lim
n→∞

λmn−l+1(An,m,Bn,m) = min
ω

λm(A(ω),B(ω))

and

lim
n→∞

λl (An,m,Bn,m) = max
ω

λ1(A(ω),B(ω)).

4. APPLICATION TO SPACE-TIME BEAMFORMING

Beamforming consists of spatially filtering signals, and allows one
to form “nulls” in the direction of interfering sources while main-
taining a given gain in a desired direction. Usually, signals are nar-
rowband and spatial processing alone is sufficient. However, when
signals are wideband, spatial beamforming performance degrades
(see, e.g, [6, Chap. 6.13]). Some sort of frequency compensation
is then required to keep good nulling performance. This can be
achieved by either time-domain or frequency-domain implementa-
tions, whose performance depend on the signal and interference en-
vironments. In this work, we consider the time-domain implemen-
tation, using tapped delay lines (see, e.g., [9]). This implementation
has been studied by many authors through numerical simulations
[7, 9] for different weight optimization criteria. However, to the
best of our knowledge, few analytical results exist in the case of the
maximal SINR beamformer. Unlike the previous studies, our ap-
proach is asymptotic but can be applied for an arbitrary array with
an arbitrary number of sensors.

As in [6], we assume that the output of each sensor has been
quadrature demodulated and that the tap spacing is less thanor equal
to the Nyquist sampling rate1T = B whereB is the bandwidth of the
signals. After recalling the expression of space-time covariance ma-
trices, we show that the optimal space-time SINR can be interpreted
as the maximum generalized eigenvalue of a block-Toeplitz matrix
pair. Then, using Theorem 1 and Corollary 1, we study the asymp-
totic performance in terms of space-time beamforming SINR (w.r.t.
the number of taps). Finally, we analyze the influence of the dif-
ferent implementation parameters and illustrate the results through
numerical examples.

4.1 Problem statement

Let consider an array composed ofM sensors. We denoteB the
bandwidth of the signals around the center frequencyf0. Then, we
consider an environment composed of a field of jammers, thermal
noise and a target signal. The jammers and the thermal noise are
modelled by non-zero bandwidth stationary processes and further-
more the thermal noise is spatially white, with powerσ2

n . The base-
band jammers have power(σ2

j ) j=1..J and power spectral density
(PSD)(S j( f )) j=1..J. The jamming+noiseM ×M spatial covari-
ance matrix is equal to:

R̄ =
∫ B

2

− B
2

J

∑
j=1

S j( f )φ(θ j , f + f0)φ (θ j , f + f0)
Hd f +σ2

nI

with φ(θ j , f + f0) =
[

ejkrT
1 i(θ j) ejkrT

2 i(θ j ) · · · ejkrT
Mi(θ j )

]T

where(rm)m=1..M denotes a vector pointing from an origin to the
mth array,i(θ j) a unit length arrival vector for a jammer in the di-
rectionθ j andk = 2π c

f+ f0
with c denoting the celerity of the wave.

The target signal is also modelled by a non-zero bandwidth station-
ary process with PSDSS( f ) and powerσ2

S. It is assumed to have a
known DOAθS. ItsM×M spatial covariance matrix may be written
as

R̄S =
∫ B

2

− B
2

SS( f )φ (θS, f + f0)φ(θS, f + f0)
Hd f.

4.2 Expression of the space-time covariance matrices

Let N denote the number of taps used for space-time processing.
The jamming+noise and target signal covariance matrices, respec-
tively R̄N andR̄S,N are of dimensionNM×NM. Due to the sta-
tionarity of the processes, the space-time covariance matrices are
block-Toeplitz structured and may be written as:













R0 R
H
1 · · · R

H
N−1

R1
. . .

. . . R
H
N−2

...
. . .

...
RN−1 RN−2 . . . R0













(3)

with

Rn=
∫ B

2

− B
2

[

J

∑
j=1

S j( f )φ (θ j , f + f0)φ(θ j , f + f0)
H+

σ2
n

B
I

]

e−i2πn fTd f

and

Rn =
∫ B

2

− B
2

SS( f )φ (θS, f + f0)φ(θS, f + f0)
He−i2πn fTd f

with n = 0, ...,N−1, for R̄N andR̄S,N respectively. Let note that
the blocks are not necessarily Toeplitz, depending on the structure
of the array. After introducingω = 2π f T andω0 = 2π f0T, these
two space-time covariance matrices are generated by the Fourier
coefficients of theM×M Hermitian matrix valued functions:

R(ω)=

{

∑J
j=1S j(ω)φ j (ω)φ j(ω)H +σ2

nI for |ω| ≤ πBT
0 for πBT ≤ |ω| ≤ π

and

RS(ω) =

{

SS(ω)φS(ω)φS(ω)H for |ω| ≤ πBT
0 for πBT ≤ |ω| ≤ π .

with S j (ω)
def
= 1

T S j (
ω

2πT ), SS(ω)
def
= 1

T SS(
ω

2πT ), φ j (ω)
def
=

φ
(

θ j ,
ω+ω0
2πT

)

andφ S(ω)
def
= φ

(

θS,
ω+ω0
2πT

)

.

4.3 Asymptotic performance analysis

4.3.1 Arbitrary jammers

Space-time beamforming consists in linearly filtering the data by a
tap-stacked vector. We denote the filterwN, whenN taps are used.
In this work, we consider the maximal SINR filter optimization cri-
terion. The optimal space-time processing (in the sense of SINR
maximization) maximizes the generalized Rayleigh quotient:

SINR(N)
def
= max

wN

w
H
NR̄S,NwN

wH
N R̄NwN

(4)

whereR̄S,N andR̄N are the space-time covariance matrices for the
target and jamming+noise signals, respectively, and givenby (3).
As noted in Section 2.2,̄RS,N and R̄N are, respectively, Hermi-
tian positive semidefinite and Hermitian positive definite matrices.
Therefore, the solution of this optimization problem is given by the
principal generalized eigenvector of these two matrices, or equiva-
lently wN ∝ P(R̄−1

N R̄S,N) whereP(.) stands for the eigenvector
associated with the largest eigenvalue of a matrix. Then, the opti-
mal space-time SINR is given by the largest generalized eigenvalue
of R̄S,N andR̄N. Noting that the space-time setting withN taps
is a special case of a processor withN + 1 taps, where theN + 1st
tap weight is set to zero in each channel, we obtain by the inclu-
sion principle in (4) that the SINR is an increasing functionof the
number of taps.

We consider in the following the limit of the SINR w.r.t.N
for arbitrary given jammer and target DOAs. In the case where
T = 1

B , the assumptions of Theorem 1 and Corollary 1 apply for the
sequence of the space-time covariance matrices(RS,N,RN) w.r.t.
the number of taps:
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lim
N→∞

SINR(N) = max
λ , f∈[− B

2 ; B
2 ]
{λ (R−1( f )RS( f ))}

where

R( f ) =
J

∑
j=1

S j ( f )φ
(

θ j , f + f0
)

φ
(

θ j , f + f0
)H

+
σ2

n

B
I (5)

and
RS( f ) = SS( f )φ (θS, f + f0)φ (θS, f + f0)

H
.

Then, sinceR−1( f )RS( f ) has rank one, it has a single non-zero
eigenvalue

SS( f )φ (θS, f + f0)
H

R
−1( f )φ (θS, f + f0)

and we obtain the following result:

Result 1 For optimal space-time beamforming sampled at the
Nyquist rate, the SINR tends to the maximal zero-bandwidth optimal
spatial SINR associated with a frequency in the band If = [−B

2 ; B
2 ]

when the number of taps increases to∞.

lim
N→∞

SINR(N) = max
f∈I f

{SS( f )φ (θS, f + f0)
H

R
−1( f )φ (θS, f + f0)}

(6)
with R( f ) given by (5).

Let note that the asymptotic (in the number of taps) space-time
SINR (6) can be interpreted as the maximal zero-bandwidth opti-
mal (in the sense of SINR maximization) spatial SINR w.r.t. fre-
quency in the bandI f . Consequently, it has the same behavior as
an infinitely narrow bandpass filter (at the frequency solution of the
maximization (6)) followed by a zero-bandwidth adaptive beam-
former. Therefore, it can outperform the zero-bandwidth optimal
spatial SINR which corresponds to the frequencyf = 0.

In the caseT <
1
B , the spectral matricesRS(ω) andR(ω) are

bandlimited to[−πBT,πBT], so minλ ,ω λ (R(ω)) = 0 and the as-
sumptions and the statements of Theorem 1 and Corollary 1 areno
longer valid. Extension of Corollary 1 in the subband[−πBT,πBT]
is thus challenging. However, extensive numerical experiments
show that Result 1 extends to that case (see Subsection 4.4.1).

In the following, we suppose that the signal is white so that

SS( f ) =
σ2

S
B . We now analyze the particular situation of jammers

whose spectra cancel at least at a common frequency.

4.3.2 Jammers whose spectra cancel at least at a common fre-
quency

In this particular case, we obtain the following result:

Result 2 In the presence of several jammers whose spectra cancel
at least at a common frequency and a white signal, we have

lim
N→∞

SINR(N) =
σ2

S

σ2
n

M.

This result means that in the presence of jammers with at least
one common zero in their spectrum, space-time processing allows
one to reach asymptotically the SINR corresponding to a jammer-
free context. Let note that though the asymptotic notion is purely
theoretical, we will see in Subsection 4.4.2 that in most practical
cases, a small number of taps is sufficient to reach near optimal
performance.

4.4 Illustrative examples

We now illustrate Results 1 and 2 through numerical experiments.
We consider throughout this section a uniform linear array (ULA)
with only one jammer where

φ(θ , f ) =
[

1 ejπ f
fu

u
... ej(M−1)π f

fu
u

]

(7)

with u = sin(θ ) (uS= sin(θS) anduJ = sin(θJ) for the target signal
and the jammer respectively) and wherefu depends on the choice
of the inter-element spacing. The parameters of the simulation are
B
f0

= 0.3, M = 16,uJ = 0.3, σ2
J = 30 dB andσ2

S = 0 dB.

4.4.1 White jammer case

In this Section, we suppose that the jammer is white in the band
[−B

2 ; B
2 ].

Influence of the time sampling frequencyNow, we examine the
influence of the time sampling rate on the optimal space-timeSINR.
In Fig.1, we plot the optimal space-time SINR for two values of the
temporal sampling period, i.e.T = 1

B and T = 1
2B and different

values of the number of taps. First, we observe that in both cases,
the SINR seems to converge to the asymptotic SINR given by Result
1, although this result has been proved only forT = 1

B . However, we
note that the convergence is much faster forT = 1

2B than forT = 1
B .

Consequently, oversampling w.r.t. the Nyquist sampling rate allows
one to improve the performance for a given number of taps. We note
that extensive experiment confirms these observations. Letus note
that the influence of the time sampling rate has been analyzedin
[8] for a bandpass tapped delay line implementation of the MMSE
algorithm in the case of a two-sensor array. In this paper, wehave
also noticed the improvement of performance in terms of SINRdue
to the use of oversampling, for an array in which each elementhas
only two weights. The physical interpretation is that oversampling
increases the correlation between interference components which
makes their nulling easier.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

u
S
=sin(θ

S
)

S
IN

R
 (

dB
)

N=1

N=2, T=1/B

N=∞

N=2, T=1/2B

Fig.1: Optimal space-time SINR withT = 1
B (- -) andT = 1

2B (-+-) for
different values of the number of taps, as a function of the target’s DOA.

Influence of the spatial sampling frequencyNow, we examine
the influence of the inter-sensor spacing equal toc

2 fu
(see (7)). In

order to respect the Shannon sampling condition, the parameter fu
must be at least equal to the maximum frequency of the signal,i.e.
fu = f0 + B

2 . This corresponds to an inter-element spacing less than
or equal to c

2( f0+
B
2 )

. However, in some practical cases, the array

may not be required to steer the entire visible region, i.e. 90 ˚ ≤
θ ≤ 90 ˚ . Therefore, a greater inter-element spacing can be allowed,
at the price of a reduced detection domain. Indeed, not respecting
the Shannon sampling condition leads to the occurence of grating
lobes at some frequencies, but they can be kept out of the visible
region if the array steering domain is sufficiently limited [6, Chap.
2.5]. Here, we analyze the influence offu on the asymptotic optimal
space-time SINR. More precisely, we compare the choice offu = f0
with the sampling frequencyfu = f0 + B

2 for which the Shan-
non sampling condition is respected. To compare both considered
cases, we plot in Fig.2 the ratio between the optimal zero-bandwidth
spatial SINR SINRZB = σ2

Sφ(θS, f0)H
R

−1φ(θS, f0) with R =

σ2
J φ(θJ, f0)φ (θJ, f0)H + σ2

nI and the asymptotic optimal space-
time SINR for fu = f0 and fu = f0 + B

2 . First, we observe that the
two plots are upper-bounded by 1. The asymptotic optimal space-
time filter outperforms the optimal spatial filter for arbitrary given
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jammer and target DOAs. Then, we note that for a target in a large
vicinity of the jammer, the asymptotic optimal space-time SINR
with f0 = fu is greater than withfu = f0 + B

2 while the behavior of
this asymptotic space-time SINR does not degrade significantly for
a target “far” from the jammer. Consequently, the choicefu = f0
improves the performance w.r.t. the Shannon sampling frequency.
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Fig.2: Ratio between the optimal spatial SINR and the asymptotic optimal
space-time SINR for two inter-sensor spacings, as a function of the target’s

DOA.

4.4.2 Bandlimited jammer case

Let suppose that the jammer has constant PSD in the band[− b
2 ; b

2 ]
with b < B. Note that in this case,R(ω) remains nonsingular and
thus Result 2 applies. Here, we illustrate the speed of convergence
of the optimal space-time SINR for a given number of taps to the
asymptotic upper-bound given by Result 2. Thus, we plot in Figs.3
and 4 the optimal space-time SINRs forb = 3

4B andb = B
2 respec-

tively (dashed plots) at given numbers of taps and compare them to
the asymptotic optimal space-time SINR (solid plot). Let note that
the caseN = 1 corresponds to spatial processing and that the SINR
degrades whenb increases. In both figures, we check that the opti-

mal SINR (asymptotically w.r.t. the number of taps) is equalto σ2
S

σ2
n
M

and that the optimal space-time SINRs converge with the number of
taps to the asymptotic optimal space-time SINR. Then, we note that
the convergence speed increases when the jammer bandwidth de-
creases.
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Fig.3: Optimal space-time SINR for different values of the number of taps,
as a function of the target’s DOA forb = 3B

4 .
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Fig.4: Optimal space-time SINR for different values of the number of taps,
as a function of the target’s DOA forb = B

2 .

For instance, we observe in Fig.4 (whereb = B
2 ) that the optimal

space-time SINR withN = 4 taps outperforms the optimal space-
time SINR withN = 8 taps of Fig.3 (whereb = 3B

4 ).
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[4] U. Grenander and G. Szegö,Toeplitz Forms and Their Appli-
cations. New York: Chelsea, 1984.

[5] R.M. Gray, “On the asymptotic eigenvalue distribution of
Toeplitz matrices,”IEEE Trans. Inform. Theory,vol. 18, pp.
725-730, Nov. 1972.

[6] H.L. Van Trees,Optimum array processing, part IV of Detec-
tion, Estimation and Modulation Theory, Wiley Interscience,
New York, 2002.

[7] W.E. Rodgers, R.T. Compton, “Adaptive array bandwidth with
tapped delay-line processing,”IEEE Trans. Aerospace Elec-
tron. Syst., vol. 15, pp. 21-27, Jan. 1979.

[8] R.T. Compton, “The bandwidth performance of a two-element
adaptive array with tapped delay-line processing,”IEEE
Trans. Antennas Propagat., vol. 36, pp. 5-14, Jan. 1988.

[9] J.T. Mayhan, A.J. Simmon, W.C. Cummings, “Wideband
adaptive antenna nulling using tapped delay-lines,”IEEE
Trans. Antennas Propagat., vol. 29, pp. 923-936, Nov. 1981.

[10] H. Gazzah, P.A. Regalia, J.P. Delmas, “Asymptotic eigen-
value distribution of block Toeplitz matrices and applications
to blind SIMO channel identification,”IEEE Trans. Inform.
Theory, vol. 47, pp. 1243-1241, Jan. 2001.

[11] M. Oudin, J-P. Delmas, “Asymptotic generalized eigenvalue
distribution of block Toeplitz matrices and application to
space-time beamforming”, submitted toIEEE Trans. Signal
Process.

[12] R.M. Gray, “Toeplitz and circulant matrices : a review,” Foun-
dations and Trends in Communications and Information The-
ory, vol. 2, pp. 155-239, 2006.

©2007 EURASIP 2453

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

