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ABSTRACT associated with each polymorph. Given both the assumed relative

Nuclear quadrupole resonance (NQR) is a non-invasive, solid Stat%mplitu.des and the statistics of the amplitude errors, the algorithm
radio frequency (RF) technique, able to distinguish between pon-'rSt estimates the relative proportions of the polymorphs by solving

morphic forms of certain compounds. Exploiting the signals from@ Stochastic robust approximation problem. Given these proportion
: P ; ; ; iistestimates, it is then possible to obtain a robust estimate of the rel-

quantifying these polymorphs is important in pharmaceutical ap_ative amplitudes associated with each polymorph, using a method

lications. Recentlv br hvbrid alaorithm | p eminiscent of the one presented 8/9]. Furthermore, following
plications ecently proposed hybrid algorithms, able to p c)Cesjé)_revious approache$|[6,8,19,10,11], we form the detector in the

the signals from multiple polymorphs, assume the amplitudes a h ' .

sociated with each polymorph are known to within a scaling. Anyréduency domain, selecting only those frequencies where we ex-

error in this a priori information will lead to performance degrada- PeCt the NQR signal to lie. 'As a result, both the computational
fomplexity of the algorithm is reduced and its robustness to resid-

tion in these algorithms. In this paper, we develop a robust hybri 7 - . ;
algorithm allowing for uncertainties in the assumed amplitudes, exyal RF interference increased. The resulting detector is termed the

tending a recently proposed robust algorithm formulated for singleR0Pust Estimation of Multiple polymorph QR Signals (REMIQS)

olymorphs to process signals from multiple polymorphs. Extend€tector. .
poymorp P g pe poymorp A word on notation:(-)T, (-)* andE{-} are used to represent

sive numerical investigations indicate that the proposed algorithmh h . dth .
provides significant performance gains as compared to both the exXN€ ranspose, the conjugate transpose and the expectation, respec-

isting hybrid algorithms, when uncertainties in the amplitudes exively. The Moore-Penrose pseudoinverse is represented)by

ist, and existing robust algorithms, when there are multiple poly-The kth index of a vector is denoted Lyj, and its two-norm by
morphs. | -1l2. Finally, diagx} is used to represent a diagonal matrix,

formed with the vectok along its diagonal.
1. INTRODUCTION

. . . . 2. DATA MODEL ALLOWING FOR UNCERTAINTY
Nuclear quadrupole resonance (NQR) is a non-invasive radio fre- ] o
quency (RF) spectroscopic technique, able to detect unique signaf shown in|LL0,11], the mth NQR echo, from a sample containing
from solid state compounds containing quadrupolar nticitius P Polymorphs, can be expressed as
making it attractive to both detection and pharmaceutical applica-
tions [1,12,/3]. Furthermore, the technique is able to distinguish be- P (p)
tween different polymorphic forms of certain compounds. Being ym(t) = Z Yoy (t) +Win(t), @
able to exploit the signals from multiple polymorphs is important =1

in explosives detection, whilst being able to quantify polymorphs is . .
important in certain pharmaceutical applications. where y, denotes the proportion of thgth polymorph, win(t) is

Recently, we have proposed various approximate maximur@" additivecolourednoise (for a detailed discussion on the colour
likelihood (AML) based detectors that examine signals from a sin-of the additive noise sed]), and yﬁr’f) (t) represents theth echo
gle polymorph, herein termed non-hybrid detecto#5[6]. The  produced by thesth polymorph, which can be well modelled &} [
aforementioned detectors assume that the (complex) amplitudes of
the spectral lines are known to within a (complex) scaling, i.e., they
assume that the relative amplitudes are knawgmiori. In practical
scenarios, there are many factors that contribute to differences be-
tween the assumed relative amplitudes, obtained under controllggheret — to,...,tn_1 represents the echo sampling timex =
condltlons,_anql the ones observ&;ig,9]. Such_dlfferences Iead to 0,...,M—1is the echo numbetts, is the time between the cen-
a degradation in performance of these algorithms. To alleviate thlt%re

problem we recently proposedrabust algorithm able to exploit ; . |
prior information on the amplitudes, while also allowing for uncer- the echo spacing arillis the temperature of the examined sample.

tainty in them [B,/9]. This robust algorithm finds the amplitude Additionally, for thekth spectral component of tith polymorph,

vector within an uncertainty hypersphere around an assumed arl-’qip) (M, G;Ep), ﬁép) and fhip) denote the (temperature dependent)
plitude vector, allowing for a more precise fit to the observed datafrequency shifting function, the (complex) amplitude, the sinusoidal
Here, the radius of the uncertainty hypersphere is a user defingdBmping constant and the echo train damping constant, respectively.
parameter, determined via simulations from the prior knowledgeAn important point to note is that the number of sinusoidal compo-
concerning the amplitudes. All of the aforementioned detectors araents,dP may be assumed to Herown whereas the examined
only able to exploit signals from a single polymorph. [i0[11], sample temperaturd;, is generallyunknown To allow for both

a hybrid detector able to exploit signals from multiple polymorphs varying environmental parameters and sample impurity, the sinu-
was proposed; however, this algorithm does not provide robustneggyiya| gamping constants and the echo damping conspiftsand

to uncertainties in the assumed relative amplitudes. Here, we merge
these problem formulations, presenting a robust hybrid detector ablg, . are commonly modelled as unknown. For many compounds,
to exploit signals from multiple polymorphs, whilst also providing
robustness to uncertainties in the prior knowledge of the amplitudes 2The term refocusing pulse refers to the pulse, for example in a pulsed-
spin locking (PSL) sequence, which refocuses the transverse magnetisation

1Quadrupolar nuclei are found in around half of all known elements.  to produce an echo.

d®
yﬁr?) (t) = Z aﬁp)e—(wmu)r]ép)e—[iép) \t—tsp|+ia4£p)(T)t7 @)
k=1

of the refocusing puldeand the echo centrej = 2tsp denotes
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such as for trinitrotoluene (TNT), the frequency shifting functions,
at likely operating temperatures, can be well modelledlasl3)]

Yo n-tap Prewhitening Ziw Frequency-selective Z,
— ) B —
Filter Fourier Transform

w‘ip) (T) = ai(<p> _ b;((p)T @)
wherea,((p) andbl” are given constants (It is noted that the fre-
quency shifting #ﬁnctions for different crystalline structures are, in Figure 1:Preprocessing of the measured data.
general, different4,/10,/11]). Furthermore, information about the
relative amplitudes is often available for a given examined sample

and experimental setu@,8,9,10,11]. To exploit this knowledge, 3. THE REMIQS DETECTOR
we will let
alip) _ pKlEp)7 ) We now proceed to develop the proposed REMIQS detector. The

measured data vector, formed frdvhechoes, may be written as
wherep and Kiip) denote the common scaling constant due to the T T T
signal power and thkth a priori known relative amplitude associ- ynv=[ yy(0) ... yyM-1) |, (11)
ated with thepth polymorph, respectively. We may concatenate theWhere for themth echo we have
P relative complex amplitude vectors to form

yn(m) =[ ¥m(to) ... Ym(tn-1) ]". (12)

As depicted in Figurél, any known noise colouring is removed

where (P is formed from thed(P) relative amplitudes associated USing ann-tap prewhitening filter, yielding the signak,,, having
with the pth polymorph. As already noted, the assumed relativdNM samples (witlN = N —n) (see also[$,10,11]). Further, as the

k=[ kT . &PHT T, ®)

amplitudes may differ from the actual (observed) ones. To allowtemperature of the sample can be assumed to lie in a known range,
for such uncertainties, we follow the approach outlineddr®], =~ we may, usingl3), determine the range of frequencies each of the
which considers the case when tmsumedimplitude vector, here sinusoidal components may be present in. These frequency regions

denotedk,, and theactualamplitude vectork, belong to an uncer- may be formed as
tainty hypersphere with radiuge, i.e.,

21ky 271ky 2k
2 { N17 N IARES) N }7 (13)
HK—Ka ,SE (6)
) with kq,...,k_beingL given, not necessarily consecutive, integers
where thekth component ok may be written asd,[9] selected such thel ) only consists of the possible frequency grid
_ o points for each of th¢dM) + ... +d(P)) signal components5[10,
Kk = (|Kakl +Arkn)e'(4Ka'k+Ak)’ (7) 11]. Hence, a frequency-selective Fourier transform can be applied

to the prewhitened echoes so that the detector considers only these

with [Ka k| and Lk, denoting the assumed magnitude and phasearrow frequency bands. These steps lead to the data ri@i&1]
components of thé&th complex amplitude, respectively, whereas

o andALJ denote the errors in theh magnitude and phase com- Zim = 2gy+Em, (14)
ponents, respectively. The magnitude errdf8, are assumed to be )

independent truncated Gaussian random variables (TGRV) whogighereE v represents the noise vector and

distributions are each given by the conditional probability density

function (PDF) gy = [P .. pw |’ (15)
— (1) (1 7(P) o (P
( alap e ) o= [ A AP ] (16)
Clo> -lrad ) = 1—F(~lKaxl)’ © viA® BP
’ L g™ 0
where f(x) is a zero mean Gaussian density, with variaoge ar = : 17)
and F(x) is its corresponding distribution function. Further, the

v:AP g
phase errorsAlf, are assumed to be independent identically dis- L gm M1
tributed (1ID) random variables, uniformly distributed over the in- (P - ) 0

terval[—¢, ¢], where0 < ¢ < mis selected according to the uncer- Bm = dlag{ el el }’ (18)
tainty in the phases. The PDFAE is thus given as _
with 8P = [r B n<p)} being the vector containing the non-
1 p .

) g —P<H<OH linear parameters and

T8 { 0  Otherwise. ©

B C(/\(p)) p) C()\(p))s(l)) T
For simplicity, we define the uncertainty parameterwhich cou- 17 P77dP gy
ples both the uncertainties in the phases and the magnitudes. For a :
given value ofv, we setp = rrﬁ, andor% =0.0001v. To allow the ciAPhgP) c(AP )
problem to be formulated as a stochastic robust approximation, we AP _ ((1) ) ).,t”sp ((d;m) d)(p).fsp (19)
i iti i gP 3 (PP 3 (PP
also introduce the decompositionofin (5), as 0 c(A™) Tt c;()\d(p))sé(p)fsp+1
K =K-+AK, (10) :
wherek andAk represent the mean and the (zero mean) random c(AlP) ﬁL L C(j\éﬂ,)))sgf’g)t
5IN— sIN-1

parts of the actual complex scalings (analytical expressions for ob- -

tainingk, E{|Ak|?} ande from assumed complex scalings and un-

certainty level are derived in secti@l). We stress that the as- S((p) — o B -t lio® (1) Pt
S

sumed complex scalingga, may not necessarily coincide wikh (20)
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wherefsp is the closest data point such trfag, <tsp. Further- K. Given these estimates, the nonlinear parame@emn be found

more,C()\ép)) andc(j\ém) represent the complex scalings due to by the maximization

the prewhitening operation wili (A ) denoting the AR prewhiten-

ing filter andA(P — g M+ - 3 (P) _ gl (T)-B"—n” max ZiuZm (33)

(see B,/10,11] for further details). Finally, the frequency-selective

Fourier transform matrixyy, is formed using13) as whereZy = f’Qéyk andp — (ngf()TZLM- Finally, using thed

maximizing 33), the test statistic is formed &%4]

VL = [Vk1 . .Vk‘j (21)
ZiwZiv
o iy 1T T(Zim) = (LM — 1) — LR (34)
g = [1e% e @ ZiZiv — ZiyZim
Using (10) in (16), we may decomposE into its mean and uncer- The signal component is deemed present if and only if
tainty matrices, i.e., B
=341, (23) T(Zim) > 9, (35)
where
= = (1) (1) = (P) =(P) and otherwise not, wher is a predetermined threshold value re-
z = [ HYxS .. HK ] (24)  flecting the acceptable probability of false alarm.
U = [ AOAc® P AP ] (25) 3.1 Derivation of the Matrix P

To form the SRLS estimate @, in (28), one needs an expression
To determine the unknown parameter vecty, we form the  for the covariance matrix of the uncertainty, defined in 27).

stochastic robust least squares (SRLS) probl@8), @iven at the  To form this we note that thenpth block vector of the uncertainty
top of next page, where matrix U can be expressed as

P =E{U'U}, @7 [Ulmp= ViAP, B ax ), (36)
andP denotes the Hermitian square rootf Below, in section , -
3.1, we discuss how to forrP using the assumed level of uncer- With m=0,....M—1andp=1,...,P. The jsith element of the
tainty. The SRLS estimate gf, minimizing (26) is given by [14] matrix P can thus be written as

~ oo -1 —
&= (ZZ+P) Tz (28) b E{Mzs[U]’&]j[U]ms} o

It should be stressed that as the measured signal is complex, the un-

structured estimatgy, is likely complex too, especially in the likely ~Using the assumption that all the uncertainties are uncorrelated and
case when there are discrepancies between the model and the meero mean, it is easy to show that we @t = O for j # s, while
sured data. Bearing this in mind, we allow for a complex scalingthe diagonal elements can be expressed as

forming the estimate ofi as

5 P = g e ‘AK(D‘Z (38)
o |18y =23 |@r i
“==p 1= 1" (29) mar
Y18yl
whereq=1,...,P,r=1...,Pand
Usinggy=[ A ... ]T, we can obtain robust estimates of

the actual complex scalingsas a solution to the constrained opti- M _ [y A() gU)
mization problem G = [VLAg(j)Bm }qr' (39)

; _ ; This indicates that one only requires the mean and variance of the
- — < L= X
rr)(lanngK Zim Hz subject tOHK Ka 2= & (30) uncertainties in order to evalua@gj. Using 6)-(10), these may be

determined as/16]
where the data matriQg, is formed from the nonlinear parameters

O 2
E{A"} = —2e (M 40
6— [ T g0 . gP p@® P ]T7 31) E{(Am)z} . le—(M)? L=l
k - m \/ZT m 2 I
and the estimatgy as wherel = —|ka| is the lower limit of the truncated distribution in
— _ 2 xot?
Qs - | WO P . (32) 8, = [crmﬁ] anc.ierf(x) T Jo et dt. Furthermore, the
mean of the uncertain phase part can be expressed as
As shown in [B/9], the minimization in/80) can be solved using the iAP P AP v aap SIN(D)
singular value decomposition @}z, providing the robust estimate E{e%} :/7¢el KF (D) dDy = o (42)
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2
&, = argminE H Zim—2 H =argmin{ gk (=T + (P
8y g o { M =28y ||, g ul {gy( +(

[N

1 - x
)'(P?)) gy~ ZinZey — &)= Zim +ZinZm |

(26)

Using [40)-(42), the meark, = E{kx}, and the variance of the
uncertain parfAky, can be conveniently derived as

_ sin

Boo= (ral+E(ap) P dore a3)
¢ g
E{lan?} = E{jk— ki) CON
2 2 g
~ IkakP+E{@0?} 3
_ o
+2|Kak[E{OR) — [k (45) 2
@
Finally, based on the constrairl)( a reasonable way to form £

could be

2
-
2|2

(46)

¢ 2
> ‘Kk — Kak
=1

with K defined as in7) and¢ = 35_, dP). The mean value of for
a given uncertainty level can then be evaluated as

4 2
E{e} = zE{‘Kk—K&k) }, (47)
k=1
with each term given by
E{ Ik~ Kaxl?} = 2lial?+E {07}
+2|Kak|E{AL} — 2|KakllK].  (48)

(%)

These relations together ensure that using the assumed complex
scalings and uncertainty level, we can obtain all the parameteréaj
needed for the implementation of the REMIQS detector.

4. LS-FHETAML

As a reference method, we will here briefly formulate the Leasto
Squares FHETAML (LS-FHETAML) detector, formed from the de-
tectorin [10,11], that does not use the a priori available information
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Figure 2:Plots illustratingpg as a function of the uncertainty level,
v, for ps = 1%.
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about the complex amplitudes and considers them fully unknown.

Using

R; = [ HO P ], (49)

and definingy as the vector containing the unknown linear param-

etersk andgy, the least square estimate@tan be formed as
. ) 2 -1
Qo= argmlnHRg,qo— VAR H2 = (R%Rg) RgZim. (50)
®

The detector is then formed usitfgy = R@(b in (33)-(35).

5. NUMERICAL EXAMPLES

- FHETAML
— REMIQS
" LS-FHETAML
:

T
80
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Probability of false alarm (%)

20 90 100

Figure 3:ROC curves comparing the detectors o= 50%

orthorhombic form may change slowly to the more stable (at room
temperature) monoclinic phase. Herein, we will limit our attention
to examine two of the polymorphic forms of TNT, i.eR, = 2,
namely the monoclinic f = 1) and the orthorhombicp(= 2)
polymorphs. The data was generated usit)g(8) together with

the temperature shifting functions and parameter values as recorded
in [11]. The number of Monte-Carlo simulations was 1500 and

In this section, we examine the performance of the proposefhe SNR was -26 dB, where SNR is defined as SN 202,
detector using simulated NQR data. TNT is a common explosive invith 02 andoZ denoting the power of the noise and the noise-free

landmines and currently poses a great challenge for the detectiagignal, respectively.

In the following analysis, we compare the

of landmines using NQR. Detection of TNT is complicated by proposed REMIQS algorithm to the non-robust hybrid FHETAML
the existence of at least two polymorphic forms, monoclinicalgorithm, presented inlD, 11], together with the LS-FHETAML

and orthorhombic, with different NQR properties, e.g., differentdetector derived in secticA. The detectors used the following
temperature shifting functions. Landmines often contain a mixturesearch regions (see, e.df] ffor further explanations on how to

of these two forms, the proportions of which can vary betweerchoose the search regions); the search region over temperature

landmines (and over time in a given landmine) as the metastablas selected af =

©2007 EURASIP
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