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ABSTRACT

Nuclear quadrupole resonance (NQR) is a non-invasive, solid state,
radio frequency (RF) technique, able to distinguish between poly-
morphic forms of certain compounds. Exploiting the signals from
multiple polymorphs is important in explosives detection, whilst
quantifying these polymorphs is important in pharmaceutical ap-
plications. Recently proposed hybrid algorithms, able to process
the signals from multiple polymorphs, assume the amplitudes as-
sociated with each polymorph are known to within a scaling. Any
error in this a priori information will lead to performance degrada-
tion in these algorithms. In this paper, we develop a robust hybrid
algorithm allowing for uncertainties in the assumed amplitudes, ex-
tending a recently proposed robust algorithm formulated for single
polymorphs to process signals from multiple polymorphs. Exten-
sive numerical investigations indicate that the proposed algorithm
provides significant performance gains as compared to both the ex-
isting hybrid algorithms, when uncertainties in the amplitudes ex-
ist, and existing robust algorithms, when there are multiple poly-
morphs.

1. INTRODUCTION

Nuclear quadrupole resonance (NQR) is a non-invasive radio fre-
quency (RF) spectroscopic technique, able to detect unique signals
from solid state compounds containing quadrupolar nuclei1, thus
making it attractive to both detection and pharmaceutical applica-
tions [1,2,3]. Furthermore, the technique is able to distinguish be-
tween different polymorphic forms of certain compounds. Being
able to exploit the signals from multiple polymorphs is important
in explosives detection, whilst being able to quantify polymorphs is
important in certain pharmaceutical applications.

Recently, we have proposed various approximate maximum
likelihood (AML) based detectors that examine signals from a sin-
gle polymorph, herein termed non-hybrid detectors [4, 5, 6]. The
aforementioned detectors assume that the (complex) amplitudes of
the spectral lines are known to within a (complex) scaling, i.e., they
assume that the relative amplitudes are knowna priori. In practical
scenarios, there are many factors that contribute to differences be-
tween the assumed relative amplitudes, obtained under controlled
conditions, and the ones observed [7,8,9]. Such differences lead to
a degradation in performance of these algorithms. To alleviate this
problem we recently proposed arobust algorithm able to exploit
prior information on the amplitudes, while also allowing for uncer-
tainty in them [8, 9]. This robust algorithm finds the amplitude
vector within an uncertainty hypersphere around an assumed am-
plitude vector, allowing for a more precise fit to the observed data.
Here, the radius of the uncertainty hypersphere is a user defined
parameter, determined via simulations from the prior knowledge
concerning the amplitudes. All of the aforementioned detectors are
only able to exploit signals from a single polymorph. In [10, 11],
a hybrid detector able to exploit signals from multiple polymorphs
was proposed; however, this algorithm does not provide robustness
to uncertainties in the assumed relative amplitudes. Here, we merge
these problem formulations, presenting a robust hybrid detector able
to exploit signals from multiple polymorphs, whilst also providing
robustness to uncertainties in the prior knowledge of the amplitudes

1Quadrupolar nuclei are found in around half of all known elements.

associated with each polymorph. Given both the assumed relative
amplitudes and the statistics of the amplitude errors, the algorithm
first estimates the relative proportions of the polymorphs by solving
a stochastic robust approximation problem. Given these proportion
estimates, it is then possible to obtain a robust estimate of the rel-
ative amplitudes associated with each polymorph, using a method
reminiscent of the one presented in [8, 9]. Furthermore, following
previous approaches [5,6,8,9,10,11], we form the detector in the
frequency domain, selecting only those frequencies where we ex-
pect the NQR signal to lie. As a result, both the computational
complexity of the algorithm is reduced and its robustness to resid-
ual RF interference increased. The resulting detector is termed the
Robust Estimation of MultIple polymorph QR Signals (REMIQS)
detector.

A word on notation:(·)T , (·)∗ andE{·} are used to represent
the transpose, the conjugate transpose and the expectation, respec-
tively. The Moore-Penrose pseudoinverse is represented by(·)†.
The kth index of a vector is denoted by[·]k and its two-norm by
‖ · ‖2. Finally, diag{x} is used to represent a diagonal matrix,
formed with the vectorx along its diagonal.

2. DATA MODEL ALLOWING FOR UNCERTAINTY

As shown in [10,11], themth NQR echo, from a sample containing
P polymorphs, can be expressed as

ym(t) =
P

∑
p=1

γpy(p)
m (t)+wm(t), (1)

whereγp denotes the proportion of thepth polymorph,wm(t) is
an additivecolourednoise (for a detailed discussion on the colour

of the additive noise see [4]), and y(p)
m (t) represents themth echo

produced by thepth polymorph, which can be well modelled as [6]

y(p)
m (t) =

d(p)

∑
k=1

α(p)
k e−(t+mµ)η (p)

k e−β (p)
k |t−tsp|+iω(p)

k (T)t , (2)

where t = t0, . . . , tN−1 represents the echo sampling time;m =
0, . . . ,M− 1 is the echo number;tsp is the time between the cen-
tre of the refocusing pulse2 and the echo centre;µ = 2tsp denotes
the echo spacing andT is the temperature of the examined sample.
Additionally, for thekth spectral component of thepth polymorph,

ω(p)
k (T), α(p)

k , β (p)
k andη(p)

k denote the (temperature dependent)
frequency shifting function, the (complex) amplitude, the sinusoidal
damping constant and the echo train damping constant, respectively.
An important point to note is that the number of sinusoidal compo-
nents,d(p) may be assumed to beknown, whereas the examined
sample temperature,T, is generallyunknown. To allow for both
varying environmental parameters and sample impurity, the sinu-

soidal damping constants and the echo damping constants,β (p)
k and

η(p)
k , are commonly modelled as unknown. For many compounds,

2The term refocusing pulse refers to the pulse, for example in a pulsed-
spin locking (PSL) sequence, which refocuses the transverse magnetisation
to produce an echo.
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such as for trinitrotoluene (TNT), the frequency shifting functions,
at likely operating temperatures, can be well modelled as [12,13]

ω(p)
k (T) = a(p)

k −b(p)
k T, (3)

wherea(p)
k and b(p)

k are given constants (It is noted that the fre-
quency shifting functions for different crystalline structures are, in
general, different [4, 10, 11]). Furthermore, information about the
relative amplitudes is often available for a given examined sample
and experimental setup [4,8,9,10,11]. To exploit this knowledge,
we will let

α(p)
k = ρκ(p)

k , (4)

whereρ andκ(p)
k denote the common scaling constant due to the

signal power and thekth a priori known relative amplitude associ-
ated with thepth polymorph, respectively. We may concatenate the
P relative complex amplitude vectors to form

κ =
[

(κ(1))T . . . (κ(P))T
]T

, (5)

whereκ(p) is formed from thed(p) relative amplitudes associated
with the pth polymorph. As already noted, the assumed relative
amplitudes may differ from the actual (observed) ones. To allow
for such uncertainties, we follow the approach outlined in [8, 9],
which considers the case when theassumedamplitude vector, here
denotedκa, and theactualamplitude vector,κ , belong to an uncer-
tainty hypersphere with radius

√
ε, i.e.,

∥∥∥κ−κa

∥∥∥
2

2
≤ ε, (6)

where thekth component ofκ may be written as [8,9]

κk = (|κa,k|+∆m
k )ei(∠κa,k+∆p

k ), (7)

with |κa,k| and∠κa,k denoting the assumed magnitude and phase
components of thekth complex amplitude, respectively, whereas
∆m

k and∆p
k denote the errors in thekth magnitude and phase com-

ponents, respectively. The magnitude errors,∆m
k , are assumed to be

independent truncated Gaussian random variables (TGRV) whose
distributions are each given by the conditional probability density
function (PDF)

f

(
∆m

k

∣∣∣∆m
k >−|κa,k|

)
=

f (∆m
k )

1−F(−|κa,k|)
, (8)

where f (x) is a zero mean Gaussian density, with varianceσ2
m,

and F(x) is its corresponding distribution function. Further, the
phase errors,∆p

k , are assumed to be independent identically dis-
tributed (IID) random variables, uniformly distributed over the in-
terval[−ϕ ,ϕ ], where0≤ ϕ ≤ π is selected according to the uncer-
tainty in the phases. The PDF of∆p

k is thus given as

f (∆p
k) =

{ 1
2ϕ −ϕ < ∆p

k ≤ ϕ
0 Otherwise.

(9)

For simplicity, we define the uncertainty parameter,ν , which cou-
ples both the uncertainties in the phases and the magnitudes. For a
given value ofν , we setϕ = π ν

100 andσ2
m = 0.0001ν . To allow the

problem to be formulated as a stochastic robust approximation, we
also introduce the decomposition ofκ, in (5), as

κ = κ̄ +∆κ , (10)

whereκ̄ and∆κ represent the mean and the (zero mean) random
parts of the actual complex scalings (analytical expressions for ob-
taining κ̄ , E{|∆κ|2} andε from assumed complex scalings and un-
certainty level are derived in section3.1). We stress that the as-
sumed complex scalings,κa, may not necessarily coincide with̄κ .

Figure 1:Preprocessing of the measured data.

3. THE REMIQS DETECTOR

We now proceed to develop the proposed REMIQS detector. The
measured data vector, formed fromM echoes, may be written as

yNM =
[

yT
N(0) . . . yT

N(M−1)
]T

, (11)

where for themth echo we have

yN(m) = [ ym(t0) . . . ym(tN−1) ]T . (12)

As depicted in Figure1, any known noise colouring is removed
using ann-tap prewhitening filter, yielding the signalzÑM, having
ÑM samples (withÑ = N−n) (see also [5,10,11]). Further, as the
temperature of the sample can be assumed to lie in a known range,
we may, using (3), determine the range of frequencies each of the
sinusoidal components may be present in. These frequency regions
may be formed as

{
2πk1

Ñ
,
2πk2

Ñ
, . . . ,

2πkL

Ñ

}
, (13)

with k1, . . . ,kL beingL given, not necessarily consecutive, integers
selected such that (13) only consists of the possible frequency grid
points for each of the(d(1) + . . .+d(P)) signal components [5,10,
11]. Hence, a frequency-selective Fourier transform can be applied
to the prewhitened echoes so that the detector considers only these
narrow frequency bands. These steps lead to the data model [10,11]

ZLM = Σgγ +ELM , (14)

whereELM represents the noise vector and

gγ = [ ργ1 . . . ργP ]T (15)

Σ =
[

H̃(1)κ(1) . . . H̃(P)κ(P)
]

(16)

H̃(p) =




V∗
LA

(p)

θ̄ (p)B
(p)
0

...

V∗
LA

(p)

θ̄ (p)B
(p)
M−1


 (17)

B
(p)
m = diag

{
e−η (p)

1 mµ . . . e−η (p)
d mµ

}
, (18)

with θ̄ (p) =
[
τ β (p) η(p)

]
being the vector containing the non-

linear parameters and

A
(p)

θ̄ (p) =




C(λ (p)
1 )S(p)

1,tn
· · · C(λ (p)

d(p))S
(p)
d(p),tn

...
.. .

...

C(λ (p)
1 )S(p)

1,t̃sp
· · · C(λ (p)

d(p))S
(p)
d(p),t̃sp

C(λ̃ (p)
1 )S(p)

1,t̃sp+1 · · · C(λ̃ (p)
d(p))S

(p)
d(p),t̃sp+1

...
. ..

...

C(λ̃ (p)
1 )S(p)

1,tN−1
· · · C(λ̃ (p)

d(p))S
(p)
d(p),tN−1




(19)

S(p)
k,t = e−β (p)

k |t−tsp|e[iω(p)
k (T)−η (p)

k ]t (20)
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where t̃sp is the closest data point such thatt̃sp ≤ tsp. Further-

more,C(λ (p)
k ) andC(λ̃ (p)

k ) represent the complex scalings due to
the prewhitening operation withC(λ ) denoting the AR prewhiten-

ing filter andλ (p)
k = eiω(p)

k (T)+β (p)
k −η (p)

k , λ̃ (p)
k = eiω(p)

k (T)−β (p)
k −η (p)

k

(see [6,10,11] for further details). Finally, the frequency-selective
Fourier transform matrix,V∗

L, is formed using (13) as

VL =
[
vk1 . . .vkL

]
(21)

vk j
=

[
1 e

i2πkj
Ñ . . . e

i2πkj (Ñ−1)
Ñ

]T
. (22)

Using (10) in (16), we may decomposeΣ into its mean and uncer-
tainty matrices, i.e.,

Σ = Σ̄+U, (23)

where

Σ̄ =
[

H̃(1)κ̄(1) . . . H̃(P)κ̄(P)
]

(24)

U =
[

H̃(1)∆κ(1) . . . H̃(P)∆κ(P)
]
. (25)

To determine the unknown parameter vectorgγ , we form the
stochastic robust least squares (SRLS) problem, (26), given at the
top of next page, where

P = E{U∗U}, (27)

andP
1
2 denotes the Hermitian square root ofP. Below, in section

3.1, we discuss how to formP using the assumed level of uncer-
tainty. The SRLS estimate ofgγ minimizing (26) is given by [14]

ĝγ =
(
Σ̄∗Σ̄+P

)−1 Σ̄∗ZLM . (28)

It should be stressed that as the measured signal is complex, the un-
structured estimatêgγ is likely complex too, especially in the likely
case when there are discrepancies between the model and the mea-
sured data. Bearing this in mind, we allow for a complex scaling,
forming the estimate ofγk as

γ̂k =

∣∣[ĝγ ]k
∣∣

∑P
k=1

∣∣[ĝγ ]k
∣∣ . (29)

Using ḡγ = [ γ̂1 . . . γ̂P ]T , we can obtain robust estimates of
the actual complex scalingsκ as a solution to the constrained opti-
mization problem

min
κ

∥∥∥ρQḡγ κ−ZLM

∥∥∥
2

2
subject to

∥∥∥κ−κa

∥∥∥
2

2
≤ ε, (30)

where the data matrixQḡγ is formed from the nonlinear parameters

θ̄ =
[

T β (1) . . . β (P) η(1) . . . η(P)
]T

, (31)

and the estimatēgγ as

Qḡγ =
[

γ̂1H̃
(1) . . . γ̂PH̃

(P)
]
. (32)

As shown in [8,9], the minimization in (30) can be solved using the
singular value decomposition ofQḡγ , providing the robust estimate

κ̂ . Given these estimates, the nonlinear parameters,θ̄ , can be found
by the maximization

max
θ̄

Z∗LMẐLM , (33)

whereẐLM = ρ̂Qḡγ κ̂ andρ̂ = (Qḡγ κ̂)†ZLM . Finally, using theθ̄
maximizing (33), the test statistic is formed as [15]

T(ZLM) = (LM−1)
Z∗LMẐLM

Z∗LMZLM−Z∗LMẐLM
. (34)

The signal component is deemed present if and only if

T(ZLM) > ϑ , (35)

and otherwise not, whereϑ is a predetermined threshold value re-
flecting the acceptable probability of false alarm.

3.1 Derivation of the Matrix P

To form the SRLS estimate of̂gγ in (28), one needs an expression
for the covariance matrix of the uncertainty,P, defined in (27).
To form this we note that themp:th block vector of the uncertainty
matrixU can be expressed as

[U]mp = V∗
LA

(p)

θ̄ (p)B
(p)
m ∆κ(p), (36)

with m= 0, . . . ,M−1 and p = 1, . . . ,P. The js:th element of the
matrixP can thus be written as

P js = E

{
M−1

∑
m=0

[U]∗m j [U]ms

}
. (37)

Using the assumption that all the uncertainties are uncorrelated and
zero mean, it is easy to show that we getP js = 0 for j 6= s, while
the diagonal elements can be expressed as

P j j = ∑
m

∑
q

∑
r

∣∣∣φ (m)
qr

∣∣∣
2
E

{∣∣∣∆κ( j)
r

∣∣∣
2
}

, (38)

whereq = 1, . . . ,P, r = 1, . . . ,P and

φ (m)
qr =

[
V∗

LA
( j)

θ̄ ( j)B
( j)
m

]
qr

. (39)

This indicates that one only requires the mean and variance of the
uncertainties in order to evaluate (28). Using (6)-(10), these may be
determined as [16]

E{∆m
k } =

σm√
2π

e−(Γl )2
(40)

E
{

(∆m
k )2

}
= σm

le−(Γl )2

√
2π

+σ2
m

er f(Γl )−1
2

, (41)

wherel = −|κa,k| is the lower limit of the truncated distribution in

(8), Γl =
[

l
σm

√
2

]
ander f(x) = 2√

(π)

∫ x
0 e−t2

dt. Furthermore, the

mean of the uncertain phase part can be expressed as

E{ei∆p
k }=

∫ ϕ

−ϕ
ei∆p

k f (∆p
k)d∆p

k =
sin(ϕ)

ϕ
. (42)
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ĝγ = argmin
gγ

E

{∥∥∥ ZLM−Σgγ
∥∥∥

2

2

}
= argmin

gγ

{
g∗γ

(
Σ̄∗Σ̄+(P

1
2 )∗(P

1
2 )

)
gγ −Z∗LMΣ̄gγ −g∗γ Σ̄∗ZLM +Z∗LMZLM

}
(26)

Using (40)-(42), the meanκ̄k = E{κk}, and the variance of the
uncertain part∆κk, can be conveniently derived as

κ̄k =
(|κa,k|+E{∆m

k }
) sin(ϕ)

ϕ
ei∠κa,k (43)

E
{
|∆κk|2

}
= E

{
|κk− κ̄k|2

}
(44)

= |κa,k|2 +E
{

(∆m
k )2

}

+2|κa,k|E{∆m
k }− |κ̄k|2. (45)

Finally, based on the constraint (6), a reasonable way to formε
could be

ε =
∥∥∥κ−κa

∥∥∥
2

2
=

`

∑
k=1

∣∣∣κk−κa,k

∣∣∣
2
, (46)

with κ defined as in (7) and` = ∑P
p=1d(p). The mean value ofε for

a given uncertainty level can then be evaluated as

E{ε}=
`

∑
k=1

E

{∣∣∣κk−κa,k

∣∣∣
2
}

, (47)

with each term given by

E
{
|κk−κa,k|2

}
= 2|κa,k|2 +E

{
(∆m

k )2
}

+2|κa,k|E{∆m
k }−2|κa,k||κ̄k|. (48)

These relations together ensure that using the assumed complex
scalings and uncertainty level, we can obtain all the parameters
needed for the implementation of the REMIQS detector.

4. LS-FHETAML

As a reference method, we will here briefly formulate the Least
Squares FHETAML (LS-FHETAML) detector, formed from the de-
tector in [10,11], that does not use the a priori available information
about the complex amplitudes and considers them fully unknown.
Using

Rθ̄ =
[

H̃(1) . . . H̃(P)
]
, (49)

and definingφ as the vector containing the unknown linear param-
etersκ andgγ , the least square estimate ofφ can be formed as

φ̂ = argmin
φ

∥∥∥Rθ̄ φ −ZLM

∥∥∥
2

2
=

(
R∗̄

θRθ̄

)−1
R∗̄

θZLM . (50)

The detector is then formed usinĝZLM = Rθ̄ φ̂ in (33)-(35).

5. NUMERICAL EXAMPLES

In this section, we examine the performance of the proposed
detector using simulated NQR data. TNT is a common explosive in
landmines and currently poses a great challenge for the detection
of landmines using NQR. Detection of TNT is complicated by
the existence of at least two polymorphic forms, monoclinic
and orthorhombic, with different NQR properties, e.g., different
temperature shifting functions. Landmines often contain a mixture
of these two forms, the proportions of which can vary between
landmines (and over time in a given landmine) as the metastable
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Figure 2:Plots illustratingpd as a function of the uncertainty level,
ν , for pf = 1%.
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Figure 3:ROC curves comparing the detectors forν = 50%.

orthorhombic form may change slowly to the more stable (at room
temperature) monoclinic phase. Herein, we will limit our attention
to examine two of the polymorphic forms of TNT, i.e.,P = 2,
namely the monoclinic (p = 1) and the orthorhombic (p = 2)
polymorphs. The data was generated using (1)-(3) together with
the temperature shifting functions and parameter values as recorded
in [11]. The number of Monte-Carlo simulations was 1500 and
the SNR was -26 dB, where SNR is defined as SNR= σ−2

e σ2
s ,

with σ2
e andσ2

s denoting the power of the noise and the noise-free
signal, respectively. In the following analysis, we compare the
proposed REMIQS algorithm to the non-robust hybrid FHETAML
algorithm, presented in [10, 11], together with the LS-FHETAML
detector derived in section4. The detectors used the following
search regions (see, e.g., [6] for further explanations on how to
choose the search regions); the search region over temperature
was selected asT = [290,310] K (in 100 steps), the common echo
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Figure 4:Mean square error in̂γ1 as a function of uncertainty level
ν .

damping parametersη0
(1) and η0

(2) both used the search region
[0.0001,0.0004] (in 100 steps). Finally, the search regions used
for the common sinusoidal damping parametersβ0

(1) and β0
(2)

were[0.001,0.01] and[0.02,0.03] (both in 100 steps), repectively.
Figure2 illustrates the probability of detection (pd) as a function
of the uncertainty level,ν , for a probability of false alarm (pf ) of
1%. For each uncertainty level, the meanε was evaluated using
(47) and (48). The figure shows that the proposed robust detector
outperforms the other detectors for all uncertainty levels; this
as the REMIQS detector is able to incorporate prior knowledge,
whilst also allowing for uncertainties in it. The figure also shows
that at low uncertainty levels the LS-FHETAML gives the worst
performance, since it fails to utilize the available information. On
the other hand, the performance of FHETAML detector deteriorates
rapidly with increasing levels of uncertainty in the assumed kappas.
Figure3 illustrates the ROC curves for the different detectors at an
uncertainty level of50%. The figure clearly shows the beneficial
performance of REMIQS over the other detectors. The ability of
the proposed detector to estimate the proportions of the polymorphs
at various uncertainty levels was also analyzed. As quantification of
polymorphs in pharmaceutical application allows for higher SNR
than typically can be expected in demining scenarios, we choose to
increase the used SNR to 0 dB when examining the quality of the
quantification (similar results hold also for lower SNRs). Figure
4 shows the MSE plots for thêγ1 estimates at different levels of
uncertainty. As is clear from the plot, REMIQS provides better
estimates at medium to high levels of uncertainties.
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