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ABSTRACT

In this paper we consider the problem of localizing mul-
tiple acoustic sources in reverberant environments. The solu-
tion that we propose is based on the combination of two tech-
niques. A blind source separation (BSS) method known as
TRINICON [3] is applied to the signals acquired by the mi-
crophone arrays. The TRINICON de-mixing filters are used
to obtain the Time Differences of Arrival (TDOAs), which
are related to the source location through a nonlinear func-
tion. A particle filter is then applied in order to localize the
sources. Particles move according to a swarm-like dynam-
ics, which significatively reduces the number of particles in-
volved. We discuss results for the case of two sources and
four microphone pairs. Experimental results confirm that the
same localization accuracy (measured in terms of RMS er-
ror) can be achieved using 25 particles instead of 300. In
addition, we propose a method, based on detecting source
inactivity, which overcomes the ambiguities that intrinsically
arise when only two microphone pairs are used.

1. INTRODUCTION

The problem of tracking wide-band acoustic sources is rele-
vant in several applications, including seismology and sonar
processing. Several works in the literature address the prob-
lem of localizing and tracking a single acoustic source. A
survey on this topic is presented in [2]. The authors pro-
pose to combine TDOAs obtained with Generalized Cross
Correlation (GCC) and Adaptive Eigenvalue Decomposition
(AED) with particle filtering [6].

The main contribution of this paper consists in extend-
ing the work in [2] to take into account two moving acous-
tic sources in reverberating environments. In addition, we
consider the case that part of the sources might be inactive
during some time periods. A common way to localize mul-
tiple acoustic sources is to use a separation technique as a
pre-processing phase. In the proposed system, we use the
TRINICON algorithm [5]], which claims to achieve separa-
tion for the case of non-instantaneous mixing of multiple
sources. The TRINICON algorithm is applied to the problem
of source localization in [4]], where the TDOAS are estimated
by estimating the positions of the extrema of the de-mixing
filters. Since the proposed work partially relies on the ideas
presented in [4], we briefly summarize this approach in Sec-
tion 21

The solution of the localization problem in a 2D space
cannot be fully determined when only one microphone pair
(thus one TDOA estimate) is used [4]]. For the single source
localization problem, TDOA estimated using more than one
microphone pair can be efficiently combined together. When
more acoustic sources need to be localized, an ambiguity
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arises: each microphone pair estimates one TDOA for each
source, but it is not obvious how to determine the correspon-
dence between TDOAs of the same source at different micro-
phone pairs. In [3] we showed that at least three microphone
pairs must be used to localize two sources unless we can rely
on some a-priori information.

The de-mixing filters estimated with the TRINICON al-
gorithm are not always reliable when one of the sources is in-
active. In [8]] a pause detection technique based on the unbal-
ancing of the output power spectra was presented. This pause
detection algorithm enables to figure out the reliability of the
TDOA estimate based on the de-mixing filters. In this paper
we propose an extension of the technique proposed in [8].
We define a global pause detection function that can be com-
puted in real-time. When a pause occurs, a pause detection
index is computed for each microphone pair, which allows
us to determine which source is inactive. The a-priori in-
formation about the activity of the sources can be efficiently
exploited to solve the aforementioned ambiguity problem. In
fact, during the pause of one source, the TDOAs correspond-
ing to the other source at the different microphone pairs can
be correctly identified. Recently, a novel approach to solve
the ambiguity problem was presented [[1], based on the max-
imization of cross-correlation between the outputs of the de-
mixing filters at different microphone pairs. Though effec-
tive, this method cannot be applied in presence of pauses.

The tracking algorithm described in [2] is based on a
state-space formulation and uses a particle filtering approach.
Recently the particle filtering (PF) algorithms have gained
a great deal of attention as they provide a solution for the
problem of state estimation in the nonlinear, multi-modal and
non-Gaussian case. For the problem at hand, the PF algo-
rithm approximates the state PDF by sampling it at relevant
points. In this paper we discuss some modifications to the ap-
proach presented in [3], in order to take into consideration the
specificity of the acoustic source localization problem. The
source dynamics in [3] is described by the Langevin model
[2], in which the velocity of the particles is randomly modi-
fied between successive iterations: for this reason, only some
particles will follow the actual source dynamics. As a conse-
quence, in order to account for the correct source motion, a
large number of particles must be used. In [9] and [7] a dif-
ferent dynamic model is used. The main idea is that at each
iteration of the PF, the particle that best explains the observa-
tions is assigned the role of “master”. All the other particles
will change their velocity in order to follow the master with
a certain momentum. In this paper, we will show how this
”swarm intelligence” can be exploited to track sources, but
with a small number of particles. If one of the sources is in-
active, its position is extrapolated from the last observations.
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Figure 1: Block diagram of BSS MIMO model

The rest of this paper is organized as follows: in Sec-
tion 2] an overview on localization task with TRINICON is
presented. Section [3|illustrates the the pause detection tech-
nique, compare to the one presented in [8]]. Sectiond]focuses
on implementation of PF with Swarm Intelligence. Finally
Section 5] discusses some experimental results.

2. LOCALIZATION WITH TRINICON

In the BSS literature, data is usually modeled as a non-
instantaneous mixture: the signal received by each of the P
microphones x), is described as a sum of delayed and filtered
replica of the source signals s,:

Q0 M—-1

xp(n) =Y Y hpguysq(n—k), (1

q=1 k=0

where Q is the number of active acoustic sources and /1, (k),
k=20,...,M — 1 denotes the coefficients of the finite im-
pulse response (FIR) from the g-th source to the p-th mi-
crophone. In the following, we assumed that the number of
microphones equals the number of sources (Q = P). The goal
of BSS is to find a de-mixing system where the output signals
y¢(n),q=1,...,0 are described by:

P L—1
Yq(”) = Z Z qu(k)xp(” —k), ()
p=1k=0

where w,, (k) is the de-mixing filter weighing the p-th sen-
sor contribution to the g-th output signal. The overall block
diagram of BSS MIMO model is illustrated in Figure[I} On
the left-hand side we see the mixing filters (h,,) and on the
right-hand sides are depicted the de-mixing filters (wpq).

The fundamental assumption of TRINICON algorithm
is that sources are non-gaussian and statistically indepen-
dent. With this hypothesis, the adaptive estimation process
of de-mixing filters converges to the correct solution, when
the overall probability density function of the outputs can
be factored out in the product of the marginal PDFs. Once
de-mixing filters have been estimated, they can be used to
retrieve the TDOAs of the active sources according to equa-
tions (B) and (). For the case of two sources and two micro-
phones (Q = P = 2), we obtain:

[ is the sampling frequency. From equations (3)) and @) we
can appreciate that the information contained in de-mixing
filters is only partially exploited to determine the TDOAs: we
need only the position of global maximum/minima to achieve
source localization.

Each TDOA determines a locus of potential positions
consistent with the observations. The locus is an hyperbola,
but it can be confused with a straight line when the distance
of the source from the microphones is much larger than the
distance between the microphones (far-field). In this case,
there is a one-to-one mapping between the TDOA and the
direction of arrival (DOA) of the source signal. The triangu-
lation of the DOAs obtained from different microphone pairs
can be used to identify the source position. When multiple
acoustic sources are active, a permutation problem arises. In
fact, using the TRINICON algorithm, the g-th output of the
de-mixing stage, y,(n), can be mapped to any of the Q origi-
nal source signals. Furthermore, when more than one micro-
phone pair is used, such a mapping is generally different for
each pair. If triangulation of DOAs is used, at least three mi-
crophone pairs are needed in order to correctly localize the
sources in a 2D space [3]]. In the following, we illustrate how
the presence of pauses in the source activity can be used to
solve the ambiguity problem.

3. SOURCE INACTIVITY DETECTION

Detection of pauses is carried out through the analysis of
power spectra of the signals produced in output to the de-
mixing stage, i.e. y,(n), ¢ =1,...,0. In [8] source inac-
tivity detection is performed in the frequency domain, since
the goal is to design a post-processing denoising filter in the
same domain. Therefore, for each frequency bin, one source
is considered inactive when its power is below a fraction of
the power of the other source, for the same frequency bin.
This technique is effective when separation is at least par-
tially achieved, i.e. the cross-talk between the outputs y,(n)
is limited. We have already observed in a previous work [3]]
that source localization can be performed without source sep-
aration being fully achieved, since the former depends only
on the location of the minima/maxima of the de-mixing fil-
ters, while the latter requires convergence of all the filter taps.
Therefore, the system presented in this paper does not as-
sume full source separation, thus making the approach in
[8] impractical. On the other hand, we notice that if one
of the two sources is inactive, the power of one of the two
outputs diminishes considerably. Therefore, we propose to
keep track of the history of the output power, in the range of
frequencies actually covered by the signals. If we detect a
sudden decrease of one of the output power, we declare one
of the sources to be inactive. We perform the same check at
each microphone pair. As a side effect, since only one output
will be active for each pair, we are able to resolve the ambigu-
ity problem, by assigning the current active output channels
to the same source. Figure[2|depicts an example of pause de-
tection. One of the two signals is inactive for part of the time.
As can be seen, the pause detection flag well identifies when

%) = (argmax |wia(n)| —argmax |wa(n)])f;',  (3)  the source is inactive. Due to the fact that the pause detection
" " is based on the history of the short-time output power, a de-
R . lay on the decision is innate in the algorithm: in the example
T = (arg max [wi1(n)| —arg max wa(mfy, @ in Figure 2] it amounts to 0.4s.
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4. LOCALIZATION THROUGH SWARM PARTICLE
FILTERS

In presence of reverberations the TDOAs measurements are
noisy, due to the presence of outliers, which causes localiza-
tion errors. Outliers removal is accomplished by a particle
filter. The state space information associated with each par-
ticle at time ¢ is described by a vector ¢ () containing the
source position and velocity in the 2D space:

alt) =[X(1),Y(1),X(1), Y (1)]. ®)

The technique presented in this paper distinguishes two op-
erating modes: in the initialization phase a localization tech-
nique based on triangulation is used, while in a second stage
two particle filters are applied separately each tracking one
acoustic source. The reason for introducing these two phases
is that during the initialization stage the TRINICON algo-
rithm has not reached convergence, thereby measurements
might be unreliable, thus hindering the accuracy of the local-
ization. On the other side, when reliable measurements be-
come available, the a-posteriori PDF of the state exhibits two
sharp peaks. Therefore the PDF can be efficiently sampled
by a limited number of particles. The convergence of the few
particles around the estimated location is obtained with an
efficient swarm intelligence model. While in the traditional
Particle Filter approach each particle exhibits an independent
dynamical model, the dynamics of each particle is dependent
from the others, as explained below. In the following, we in-
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troduce the key concepts of the modified particle filter with
swarm dynamics.

The proposed tracking algorithm is summarized below:

1. Inmitialization: two swarm particle filters (one for each
source) are instantiated only when TDOA estimations be-
come stable. Particles are initialized in a random posi-
tion in proximity of the two geometric triangulation of
the DOAs. In the following the apex g will denote the in-
stance of the swarm particle filter which we are referring
to.

2. Dynamic model evolution: Each particle o*' (1) is
shifted according to the following dynamic model:

X0y = X = 1)+ ¢,BPY — X (1 - 1)) ©)
+c,B(Ple} —Xi{g} (r—1));
X @) =X -1+ X ), @

where Pl-{g} is the best past position of the particle i, i.e.
the position for which the particle achieved the highest
likelihood in the whole past history. P8} is the position
of the most likely particle at the current iteration, 3 is a
random real value sampled from a uniform distribution
in the range [0,1]. The inertia coefficient I determines
the reliability of the last particle movement. Analyzing
equations (6) and (7) we can observe that each particle is
updated following a ”private” memory of the particle his-
tory with weight ¢, (the first line of equation @) and a
social behavior with weight cs(the second line of equa-
tion (6)). When a pause is detected, the particles are
shifted extrapolating their position based on the last re-
liable TDOAs observations.

3. Weight assignment: at each time instant, a new weight

w;-{g} (¢) is assigned according to the likelihood of the par-
ticle given the observed measurements. Every pair of mi-
crophones provides TDOA measurements according to
equations (3) and (3). A likelihood function F,(a(z))
is computed for each microphone array as in [2]. Un-
der the hypothesis of statistically independent measure-
ments, the particle weights are computed according to

EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

the global likelihood function:

Fa(efh (1)), (®

=

w0 =P 1) = [T

n

Particles belonging to each swarm particle filter are then
normalized according to the following constraint:

Ny
Y wit (o) =1. ©)
i=1

4. Localization: The estimated source locations and veloci-
ties correspond to the centroids of the two swarm particle
filters:

Ny
B =Y wi 0a () (10)
i=1

5. EXPERIMENTAL RESULTS

Figure[3]illustrates the block diagram of the proposed system.
As stated in Section El, two particle filters are instantiated,
one for each source. The pause detection block decides if
TDOA measurements are reliable or not.

The original source signals are speech male segments
sampled at f; = 44.1KHz. In order to collect ground truth
data, impulse responses from each source to each micro-
phone are simulated using a fast beam tracing algorithm ev-
ery 0.125s along the source path. Simulations are carried out
in a room whose dimensions are 5m X 5Sm x 2.7m. The rever-
beration time ranges from 0.11s to 0.61s. In order to test the
tracking capabilities with silent sources, we can arbitrarily
set pauses in any of the source signals.

Figure [] depicts an example of tracking of two active
sources in mildly reverberating conditions (7gg = 0.2s). The
continuous lines represent the ground truth data. The number
of particles tracking each source is set to 25 for each instance
of the swarm particle filter.

In Figure [5] the same experiment is repeated, but when
one of the two sources is kept inactive at the time instants
indicated in Figure 2] The pause occurs in proximity of the
change of direction of source 2, therefore the extrapolation
of the trajectory based on the last TDOA observations intro-
duces a noticeable error.

Extensive simulations have been conducted setting dif-
ferent reverberation times, in order to compare the follow-
ing localization techniques: 1) proposed swarm particle filter
(SPF); 2) traditional particle filter (PF); 3) triangulation of
DOAs. As for the latter, we identify the source position as
the point that minimizes the average square distance from
the DOAa. The localization error is defined as the root mean
square error between the ground truth data and the estimated
location. One of the two sources has been kept inactive as
in Figure 2| The results of these simulations are illustrated
in Figure We observe that the swarm particle filter ap-
proach outperforms the other techniques in reverberant en-
vironments (759 > 0.55s), keeping the average localization
error below 0.25m. For mildly reverberating environments,
traditional PF and SPF give similar performance. Neverthe-
less, the SPF achieves the same localization error but at a
fraction of the computational cost of PF. In fact, by exploit-
ing the swarm dynamics, the number of particles is equal to
50 for SPF (25 for each source), versus 300 particles for PF.
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Figure 4: Trajectory followed by sources and correspond-
ing localizations with the swarm particle filter (two active
sources)

6. CONCLUSIONS

This paper presents an efficient multiple acoustic source lo-
calization algorithm stemming from the combination of a
BSS technique and a particle filter with swarm intelligence.
Furthermore, a solution for the removal of ambiguity prob-
lem is provided using a source inactivity detection algorithm.
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