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ABSTRACT
We present a new concept of speaker verification based on
a target independent decision system. The basic principle is
to build a system that decides whether two sequences were
pronounced by the same speaker. In our view, this system is
aimed to complement traditional ones. While the principle
is quite general, in this paper we use an SVM scheme to im-
plement it. To do so, we conceive a kernel between pair of
sequences using GMM distributions estimated on each given
sequence. We present experiments on NIST Speaker Recog-
nition Evaluation. The individual performance of the new
system is similar to the GLDS-SVM, and the fusion of both
outperforms the baseline GMM system.

1. INTRODUCTION

The training of a target speaker classifier is the heart of
state-of-the-art text-independent speaker verification sys-
tems. That is, given some target speaker (TS) utterances
to be used for system training, a TS-dependent classifier is
built using some additional background data that represent
impostor utterances. Given a test utterance, the classifier re-
turns a score that is usually compared with a TS-independent
threshold to automatically decide whether the utterance was
pronounced by the target speaker. Fig.1 illustrates the un-
derlying architecture when there is one single training utter-
ance available for the target speaker, as with NIST Speaker
Recognition Evaluation (SRE) in the “core test condition”.
This experimental protocol will be our setting in this paper.

FRONT-END
PROCESSING

SEQUENCE 1

SEQUENCE 2

background SAMPLES
/ impostor SEQUENCES

TARGET
MODELS
TRAINING

SCORING
“target” /

“non-target”

DEV

EVAL
“target”

DECISION
MAKING

T
R
A
IN

T
E
S
T

-1

+1

Figure 1: Block diagram of a traditional speaker verification
system, with only one training utterance.

Note however that, particularly when the durations of the
test and training utterances are of the same order, one can
think of reversing the roles of these utterances, i.e. of train-
ing the target model on the test sequence and to score on the
training sequence. This idea of “input swapping” was sug-
gested during NIST SRE workshops (e.g see [1]).

Inspired by this observation, we investigate in this paper
the idea of conceiving a speaker verification system where
the inputs are pairs of sequences (playing a symmetric role)
rather that single sequences. The goal of this system is to
determine if “two sequences were pronounced by the same
speaker”; note that this problem formulation is usually en-
countered in speaker segmentation. In other words, we aim
at building up a classifier for which the input is the pair
formed by the target and the test sequences, and the output
is a decision whether these sequences were uttered by the
same speaker. It has several advantages in comparison with
traditional approaches:
• It enables to conceive systems with high efficiency and/or

low memory requirement, because only one model has to
be trained to solve the speaker verification problem.

• Expressing a training criterion on pairs of sequences is
suitable to discriminate between intra- and inter-speaker
variabilities. For instance, the channel mismatch problem
can be directly attacked provided that the training corpus
contains sequences with several recording conditions for
each background speaker.

Finally, the problem reformulation leads to a novel strategy
to exploit input information, that can be expected to comple-
ment classical strategies.

As will be explained, Support Vector Machines (SVM)
seem to be an appropriate tool to implement the new sys-
tem. The main challenge is to construct a kernel between
pairs of sequences. We provide a solution using distances
between Gaussian Mixture Models (GMM) estimated on the
sequences of acoustic vectors. Discriminative training with
the new kernel amounts to learn a distance between distribu-
tions of acoustic vectors, that is relevant for speaker recogni-
tion.

In the next section we develop the architecture of the new
system. In section 3 we the discuss the implementation of
such a system with an SVM scheme. In section 4, we develop
the construction of the kernel between pairs of sequences re-
quired for the SVM. Finally in section 5, we show experi-
ments on a text-independent speaker verification task using
NIST SRE database.

2. PAIR-OF-SEQUENCES SPEAKER
VERIFICATION SYSTEM

In the whole paper, we consider the scenario where only
one sequence is available to characterize each target speaker
(namely one training utterance from the traditional view-
point). The architecture of our pair-of-sequences speaker
verification system is given in Fig.2. The inputs of this sys-
tem are pairs of utterances, we thus need a development set
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Figure 2: Block Diagram of the Pair-of-Sequences (PoS)
speaker verification system.

of pairs of sequences. This requires a background set of se-
quences labeled according to speakers. This set is then ar-
ranged so as to provide positive (resp. negative) trials with
pairs of sequences uttered by the same speaker (resp. dif-
ferent speakers). After the front-end processing, a single
classification model is trained to decide whether a pair of
sequences corresponds to a same speaker. Note the major
difference w.r.t. traditional systems: only one classification
model is trained and is independent of the target speaker.
The target speaker sequence is not used to train the classifier.
This sequence is used during testing in combination with a
given test utterance. This makes this system somehow “uni-
versal” because of its independence of the target speaker. In
our view, this could be an advantage if the system is used
to help for decision making, for instance by fusing it with a
traditional system.

We mention here that a similar an approach, although
not published, was proposed by [1] under the name “Grand
Logistic Regression”. Like the Fisher kernel approach [2],
this work is based on the derivative computation of each
sequence likelihood w.r.t the Universal Background Model
(UBM), which is estimated on a large unlabeled database and
describes the prior distribution. It was reported that the re-
sulting speaker verification system showed bad performance
individually, but improved performance when fused with a
classical system.

3. PAIR-OF-SEQUENCES SVM SPEAKER
VERIFICATION

The new system can be implemented using any decision al-
gorithm that enables to decide whether two sequences were
pronounced by the same speaker. For instance, techniques
from speaker segmentation can be borrowed for this pro-
pose, such as Bayesian Information Criterion (BIC) [3] or
the Generalized Likelihood Ratio [4]. These quantities com-
pare the hypothesis that two segments were generated or not
by a same process, via the likelihoods w.r.t models trained
on each segment separately and on both segments. Unfortu-
nately, using these criteria for speaker verification produces
poor empirical results compared to classical approaches be-
cause of the lack of discriminative training.

In this paper we use Support Vector Machines (SVM)
to implement the new system for two main reasons. First,
SVM allow efficient learning and can naturally handle dif-

ferent kinds of data including structured ones [5]. Actually,
the main challenge to apply SVM in our case will be to de-
sign a suitable kernel between pairs of sequences.

Second, the resulting training procedure presents an ad-
vantage w.r.t. classical SVM training in speaker verification.
Indeed, with the new system it is easy to collect a similar
number of positive and negative trials for the training cor-
pus. In classical SVM systems with sequence kernels, the
target model is trained using the available sequences of the
target speaker, which number is usually much lower than the
number of impostor sequences. And in the scenario we are
considering, it is one-against-all scheme. This imbalance is
a limitation for the generalization capacity of SVM, as re-
ported for example in [6]. Indeed, with most of classical
SVM approaches for speaker verification, the dimension of
the feature space induced by the sequence kernel is higher
than the number of training utterances. In this context, sepa-
rating the single target entry (+1) from all impostor entries
(-1) can be easily completed, so training should be done
with a hard margin criterion. This prevents from controlling
the bias-variance trade-off as explicitly done by soft-margin
SVM in standard situations, and also from taking into ac-
count the disproportion between positive and negative entries
as recommended by [7].

With the new approach, suppose we have N background
speakers in the development corpus, with S > 2 sequences
for each speaker. Then we can simulate NS(S−1)/2 positive
trials and up to S2N(N−1)/2 negative trials.

4. A KERNEL BETWEEN PAIRS OF SEQUENCES

As said above, the main challenge is to design a suitable
kernel between pairs of sequence. An option is to conceive
an explicit map of pairs of sequences in a high-dimensional
“Feature Space”, where points corresponding to a priori sim-
ilar sequences would be distant from points corresponding to
dissimilar ones. Then, the kernel could be any vector kernel
(dot product, polynomial, Radial Basis Functions, . . . ) be-
tween maps of pairs.

In this paper, we provide a solution based on the associ-
ation of a probability distribution to each sequence. In prac-
tice, the distribution is a GMM estimated using a MAP adap-
tation of the UBM, as it is commonly done in speaker verifi-
cation [8]. We then seek a suitable map of pair of GMMs that
would distinguish between similar and dissimilar GMMs.

A natural and widely used measure of similarity between
distributions is the Kullback-Leibler (KL) divergence [9].
This measure has been considered in several modeling strate-
gies for speaker verification [10, 11, 12, 13]. In particular
in [12], the log-sum inequality [14] is used as an upper bound
of KL-divergence to derive the “GMM supervectors” kernel.
In this paper we use this inequality to motivate the derivation
our pair-of-sequences kernel.

4.1 Kernel construction
In the following, all GMMs share the same weights and di-
agonal covariance matrices1. Let G denote the number of
Gaussian components, and g the Gaussian index shared by all
GMMs. Let θX = {ωg,µ

X
g ,Σg}g=1···G be the set of weights,

1Indeed, a powerful method in speaker verification consists in training a
UBM on a large database and then adapting only mean vectors to estimate
GMM parameters on relatively short sequences: it enables to use complex
models while avoiding over-fitting.
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mean vectors, and covariance matrices of a GMM trained on
a sequence X of vectors in ℜd . The log-sum inequality [14]
yields the following upper bound closed form expression for
the KL-divergence DKL between two GMMs:

0 ≤DKL (θX‖θY)≤ 1
2

G

∑
g=1

ωg
(
µX

g −µY
g
)>

Σg
−1 (

µX
g −µY

g
)

︸ ︷︷ ︸
DGMM (θX,θY)

(1)
The distance DGMM defined in (1) can be seen as a

weighted quadratic mean of Mahalanobis distances between
Gaussian components. This shows that all the information
required to compute the distance DGMM (and thus to approx-
imate DKL) is encoded in the Mahalanobis distances between
corresponding Gaussian components. All these distances are
normally small for similar Gaussians and high for dissimilar
ones. Therefore, we can consider these distances as potential
good candidates to form the map between pairs of GMMs,
and by this way pairs of sequences.

We thus define the map of a pair of sequences/GMMs as
the G-dimensional vector:

φ({X,Y}) = Φ({θX,θY})

=


√(

µX
1 −µY

1

)>Σ1
−1 (

µX
1 −µY

1

)
...√(

µX
G −µY

G

)>ΣG
−1 (

µX
G −µY

G

)

(2)

Note that the norm of this map is simply DGMM(θX,θY).
Finally, given a vector kernel k, the kernel K between a

pair of sequences is given by:

K
(
{X,Y};{X′,Y′}

)
= k

(
φ

(
{X,Y}

)
;φ

(
{X′,Y′}

))
(3)

The vectorial kernel that led to the best results in our vali-
dation experiments is the widely used Gaussian RBF kernel:

K
(
{X,Y};{X′,Y′}

)
= e−γ

∥∥φ({X,Y})−φ({X′,Y′})
∥∥2

(4)
where the locality parameter γ is tuned by cross-validation.

4.2 Model normalization
In [15, 13], performance of speaker verification systems
based on the KL divergence are significantly improved when
using a model normalization called “D-MAP”. This normal-
ization applies a linear transformation to the mean vectors
of an adapted GMM so as to make all normalized GMMs
equidistant from the reference UBM in terms of DGMM . Let
θ0 = {ωg,µ

0
g,Σg} denote the parameters of the UBM. The

D-MAP of the measure induced by the map Φ is given, for
every Gaussian component g, by:

µX
g = λ X

0 µX
g +

(
1−λ X

0
)
µ0

g

with λ
X
0 =


1

2‖Φ({θ0,θX})‖2
if θX 6= θ0

0 otherwise

(5)

where ‖ · ‖2 is the euclidean norm. Using this normalization,
we finally consider in (2) the normalized map between pairs
of sequences:

φ({X,Y}) = Φ
({

θ X,θ Y
})

(6)

This map guarantees that all model pairs formed by the UBM
and a normalized GMM has a half-unitary euclidean norm:
‖Φ

(
{θ0,θ X}

)
‖2 = 1/2. Triangular inequalities using this

property implies that the norm ‖Φ
(
{θ X,θ Y}

)
‖2 of the nor-

malized map lies in the interval [0,1], which is welcome for
algorithm stability. Experiments show great improvement in
performance when using such a model normalization.

5. EXPERIMENTS

5.1 Corpora
Experiments are carried out on the Biosecure project proto-
col [16]. NIST SRE 2003 and 2004 databases serve as two
corpus involving distinct populations of female speakers: one
is used to develop and the other one to evaluate. In tradi-
tional systems, the development data is partly used to train
the UBM, or to feed discriminative training with impostor
utterances. In our new system, this corpus is used to produce
the training set of pairs of sequences.

All utterances (train and test sequences) contain roughly
2 minutes of conversational telephone speech. The develop-
ment corpus involves about 100 speakers and includes 1616
speech utterances. To train our new classifier, 7500 pairs of
sequences were formed from this set and SVM hyperparam-
eters were tuned by cross-validation. The evaluation set con-
sists in more than 17000 trials with about 200 target speakers.

5.2 Front-end Processing
As our main interest is in exploring modeling strategy, the
front-end processing is a classical one in speaker verifica-
tion. The signal frames are characterized by 32 coefficients
including 16 Linear Frequency Cepstral Coefficients (LFCC)
and their first derivative coefficients, obtained as follows. 24
filter bank coefficients are first computed over 20ms Ham-
ming windowed frames at a 10ms frame rate. Filter bank
coefficients are then converted to 16th order cepstral coeffi-
cients using a Discrete Cosine Transformation.

Then, speech activity detector is processed to remove low
energy frames using the ALIZE toolkit [17], and parameter
vectors are normalized to fit a zero-mean and unit-variance
distribution on each sequence. The goal of this input normal-
ization is to reduce channel effects.

5.3 Individual performance
Fig.3 shows the performance of our new Pair-of-Sequences
(PoS) SVM system, with and without the D-MAP model nor-
malization, using a Gaussian RBF kernel k in (3). It also
shows the performance of two classical systems. The first
one is a classical UBM-GMM system implemented with the
ALIZE toolkit [17], with 2048 components, 10-best scor-
ing [8] and T-norm score normalization [18]. We recall here
that the UBM is used to estimate sequence distributions (by
MAP adaptation) in the PoS SVM system. The second one
is a classical SVM system using the GLDS kernel [19]. We
thus have a generative and a discriminative system as refer-
ence for comparison.
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Figure 3: DET plots on NIST SRE 2004 of the new PoS
SVM system, compared with two classical systems.

We can first see the high benefit provided by the D-MAP
normalization. It is also interesting to note that, although it
is based on a totally different strategy, the new PoS SVM
system shows roughly comparable performance with UBM-
GMM and GLDS-SVM. This suggests that our new concept
makes great sense.

5.4 Fusion
More interestingly, Fig.4 shows the gain in performance pro-
vided by fusing the classical systems with the new one, with
a linear combination of output scores. The weights of the
combination, fixed for all trials, were determined by valida-
tion on the development corpus.

We can see that even if the GLDS-SVM system and our
new PoS system show comparative individual performance,
fusing them (even in a simple way) improves significantly.
This fusion even outperforms the UBM-GMM. This con-
firms our initial guess about the potential complementarity
of the new system with traditional ones. Nevertheless, fus-
ing our new system with the UBM-GMM yields just a very
slight improvement. This is probably due to the fact that both
exploits the same “basic” information provided by the UBM.

Tab.1 sums up the results in terms of Equal Error Rates
(EER) and Detection Cost Function (DCF). The DCF is a
weighted sum of false alarm and false rejection rates as de-
fined by NIST evaluation plans [20].

6. CONCLUSIONS AND FUTURE WORK

We presented a new concept of speaker verification based
on a target-independent system that decides whether two ut-

Figure 4: Fusion of the new system with classical systems

Table 1: Performance of classical systems and the new sys-
tem

EER DCF (×10−3)
(1) PoS SVM without D-MAP 17.28 67.3
(2) PoS SVM (with D-MAP) 12.29 53.4
(3) UBM-GMM 11.48 49.1
(4) GLDS SVMs 12.13 52.6
Fusion (2) / (3) 11.08 47.0
Fusion (2) / (4) 10.18 45.2

terances were pronounced by the same speaker. We devel-
oped a kernel between pairs of sequences and used it to im-
plement the new concept in an SVM scheme. An efficient
input normalization was also proposed to make the system
more robust. The individual performance of the new system
was comparable to two classical systems: UBM-GMM and
GLDS-SVM. Moreover, its fusion with GLDS-SVM outper-
formed all the other systems. These results suggest that the
new concept is worth considering and should be further in-
vestigated. Our future work will focus on generalizing the
new concept to protocols where there are several training ut-
terances per target speaker.
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