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ABSTRACT 

This paper proposes a new algorithm to consider cross 

correlation between noise and clean speech signal when 

autocorrelation-based features have been used for robust 

speech recognition.  Also, an overestimation parameter has 

been inserted in clean speech autocorrelation estimation. 

We have also adopted the normalization of mean and 

variance of energy and cepstral parameters as an extra 

means of further improving the speech recognition rate. 

We recently proposed a new approach for 

Autocorrelation-based Noise Subtraction (ANS). This 

method did not consider any possible cross correlation 

between noise and the clean speech signal. In this paper we 

have tried to consider this term during the estimation of 

clean speech signal autocorrelation.  

Our results on the Aurora2 corpus have shown that the 

recognition rate, when the cross correlation term is 

considered, is improved. Furthermore, taking into account 

the overestimation parameter further improves the results.  

1. INTRODUCTION 

A main problem in the Automatic Speech Recognition 

(ASR) systems is the sensitivity of these systems to the 

environmental variations. When the speech recognition 

system is trained with clean speech data, its performance 

may degrade in real environment. The real environmental 

variations include the additive noise, channel distortion, 

voice reverberation and other interferences. 

Generally, the degradation in the speech recognition 

rate decreases with an increase in the signal to noise ratio 

(SNR). In low SNRs, this performance degradation is more 

obvious due to the larger mismatch between the train and 

test conditions. 

The most usual case of mismatch between the train 

and test conditions is the availability of additive noise. 

Therefore, most of the robust recognition methods assume 

the noise to be additive in frequency domain and stationary. 

In this paper, we will also consider the additive stationary 

noise case.  

The autocorrelation domain is known as a domain with 

certain robustness properties in noisy conditions. Some 

 

methods extract the speech features using the spectrum 

extracted from the signal autocorrelation sequence. 

Examples of such approaches include Short-time Modified 

Coherence (SMC) [1], One Sided Autocorrelation LPC 

(OSALPC) [2] and Relative Autocorrelation Sequence 

(RAS) [3]. More recently, methods such as Autocorrelation 

Mel Frequency Cepstral Coefficient (AMFCC) [4] and 

Differentiation of Autocorrelation Sequence (DAS) [5] 

have used the amplitude of autocorrelation sequence. There 

also exist some methods that have tried to use the phase of 

autocorrelation spectrum for feature vector extraction such 

as Phase AutoCorrelation (PAC)[6].  

Although many efforts have been made to extract 

robust features from the signal autocorrelation sequence, 

the above mentioned methods suffer from disadvantages 

that prevent them from achieving the best performance 

among other methods. 

In this paper, first we will discuss the Autocorrelation-

based Noise Subtraction method (ANS) [7]. This method 

assumes that there is no correlation between the clean 

speech signal and noise. We propose a modified approach 

by removing the uncorrelated speech and noise constraint 

used in ANS. Therefore, a cross correlation term is inserted 

in the formulation of the ANS method.  

Secondly, we apply an overestimation parameter to the 

noise autocorrelation sequence estimation. Similar to the 

Spectral Subtraction (SS) method [8], here, there could 

exist some unwanted errors such as phase, amplitude and 

cross correlation [9]. The solutions we provide here, are in 

fact introduced to overcome such error terms. Meanwhile, 

unlike spectral subtraction, in autocorrelation domain we do 

not need the flooring parameter. This means that we do not 

need to be concerned about an important problem, known 

as one of the major limitations in spectral subtraction.  

The organization of this paper is as follows. In section 

2, the autocorrelation theory in relation to our overall 

proposed approach will be discussed. In section 3, we will 

describe the proposed algorithms and the parameter settings 

in our implementation. Section 4 includes the 

implementations and experiments and Section 5 concludes 

the paper. 
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2. FORMULATION OF NOISY AND CLEAN 

SIGNALS AND NOISE IN AUTOCORRELATION 

DOMAIN 

2.1 Autocorrelation and ANS Method  

If v(m,n) is the additive noise and x(m,n) the noise-free 

speech signal, then the noisy speech signal, y(m,n), can be 

written as  

),(),(),( nmvnmxnmy +=  10 −≤≤ Mm , 10 −≤≤ Nn    (1)  

where N is the frame length, n is the discrete-time index in 

a frame, m is the frame index and M is the number of 

frames. 

If x(m,n) and v(m,n) are considered uncorrelated, the 

autocorrelation of the noisy speech can be expressed as  

),(),(),( kmrkmrkmr vvxxyy +=     10 −≤≤ Mm ,      

                                                                10 −≤≤ Nk      (2)  

where )k,m(ryy  , ),( kmrxx  and ),( kmrvv  are the short-

time autocorrelation sequences of the noisy speech, clean 

speech and noise respectively and k is the autocorrelation 

sequence index within each frame. Assuming the additive 

noise to be stationary, its autocorrelation sequence can be 

considered the same for all frames. Therefore, the frame 

index, m, can be omitted from the additive noise part in 

equation (2). Hence  

)(),(),( krkmrkmr vvxxyy +=       10 −≤≤ Mm ,  

                                                             10 −≤≤ Nk          (3) 

For simplicity, hereafter, we will omit the frame index m 

from the noise autocorrelation sequence. 

In ANS, we assume the noise signal to be stationary. 

Furthermore, the average of a few initial values of the 

autocorrelation sequence of noisy speech signal were used 

for noise autocorrelation estimation, i.e.. 
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where P is the number of initial frames in each utterance 

and )(ˆ krvv  is the noise autocorrelation estimation. 

Therefore, ANS estimates autocorrelation of clean speech 

signal as 

                     )(ˆ),(),(ˆ krkmrkmr vvyyxx −= .                   (5)  

2.2 Cross Correlation and Kernel Method 

Generally, assuming the speech signal and noise to be 

completely uncorrelated, we write the autocorrelation of the 

noisy speech signal as the sum of the autocorrelations of 

clean speech signal and noise. But here, removing the 

above assumption, the correlation between the clean speech 

signal and noise should also be considered in equation (3), 

therefore we have: 

)},().,({)(),(),( * kmvkmxEkrkmrkmr vvxxyy ++=  

)},().,({ * kmvkmxE+                         

)},(cos.),(.),({.2)(),( kmkmvkmxEkrkmr vvxx θ++=           (6)  

where ),( kmθ  is the instantaneous phase difference 

between clean speech signal ),( kmx and noise ),( kmv . If we 

assume ),( kmθ  to have a uniform distribution between π−  

and π  and clean speech signal and noise are stable in the 

averaging period, then we will have the following equation: 

),(cos.),(.),(.2)(),(),( kmkmvkmxkrkmrkmr vvxxyy θ++≈   (7)  

Generally, ANS method assumes that there is no cross 

correlation between noise and clean speech signal leading 

to the following relationship between noisy speech, clean 

speech and noise autocorrelation sequences, which is the 

same as equation (3), 

                      )(),(),( krkmrkmr vvxxyy += .                      (8) 

The definition of Equation (8) is based on the 

assumption that the expectation value of ),(cos kmθ  in 

equation (7) is equal to zero. However, this might not be 

true even if the noise autocorrelation is estimated 

accurately. 

It is important to consider the phase difference 

),( kmθ between clean speech signal and noise in the noisy 

speech signal. In some situations, the autocorrelation 

sequence of the clean speech signal could not be exactly 

retrieved by ANS method, since the cross correlation 

between clean speech signal and noise is not taken into 

account. If we insert this phase difference into equation (8), 

we  will have it as follows [11]. 

)),(cos).,(21).((),(),( kmkmrkrkmrkmr vvyyxx θ+−=  

                  )()).,(),,((),( krkmkmrMkmr vvyy θ−=              (9)   

where 

),(

),(
),(

kmv

kmx
kmr =  

            ),(cos).,(21)),(),,(( kmkmrkmkmrM θθ += .       (10)  

Therefore in order to remove the noise effect precisely, 

we should consider not only the exact noise autocorrelation 

),( kmrvv , but also the function )),(),,(( kmkmrM θ  should be 

calculated for each lag. 

2.2.1 Calculation of  )),(),,(( kmkmrM θ  

The variation of the kernel function )),(),,(( kmkmrM θ  in 

a frame is drawn in Figure 1. We normalized ),( kmv  

between 1~0  and ),( kmθ  changes between ππ ~−  with 

clean speech amplitude equal to 1.  

As it is clear from Figure 1, when the noise amplitude 

),( kmv  is large, changes in ),( kmθ results in large changes 

in )),(),,(( kmkmrM θ . By comparing equations (8) and (9), 

we can see that in (8), )),(),,(( kmkmrM θ  is omitted which 

means that the effect of noise phase is not considered. 

Therefore, obviously, the ANS method cannot lead to an  

 

©2007 EURASIP 2356

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



b=.40         a=1.2 

b=.41 

b=.42 

b=.43 

b=.44 

b=.45 

b=.46 

b=.47 

b=.48 

b=.49 

b=.50 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Variation of  )),(),,(( kmkmrM θ  versus ),( kmd   

and ),( kmθ . 

appropriate improvement with the changes in SNR. In fact, 

the problem with ANS method is that it does not take into 

account the amplitude ratio ),( kmr  and phase 

difference ),( kmθ . From equation (10) we have the noise 

autocorrelation component as follows 

),(),(),( kmrkmrkmz xxyy −=                  

)),(1),cos().,(2),(()( 2 kmrkmkmrkmrkrvv −++=  (11)  

Since we do not know the exact value of phase 

difference ),( kmθ , the value of  

       ),(1),(cos).,(2),(2 kmrkmkmrkmr −++ θ          (12) 

cannot be calculated exactly. Hence, we will use its 

expectation value instead of it, i.e 

∫
−

++=
π

π

θ
π

γ 1),(cos).,(.2),({
2

1
)),(( 2 kmkmrkmrkmr  

                                θdkmr )},(−                             (13) 

This is a function of r(m,k) and is shown in Figure 2. 

Therefore, the noise autocorrelation component is  

                      )),(().(),( kmrkrkmz vv γ=                         (14) 

and autocorrelation of clean speech signal is estimated by 

                   ),(),(),( kmzkmrkmr yyxx −= .                      (15)  

For simplicity, according to Figure 2, we replace 

function )),(( kmrγ  in one frame of utterance as )(rγ  and 

approximate with the following equation which has roughly 

a similar shape and is found empirically 

                       )braexp()r( −=γ ,                           (16)    

where a was set to 1.2 and b to 0.45.                                                                                         

Therefore, in our implementations, we have used (16) 

instead of (13). This new proposed method which has used 

the function )),(),,(( kmkmrM θ to consider the cross  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Function )(rγ  

correlation term between clean speech and noise is named 

Kernel method. 

2.3 Overestimation Parameter in Kernel Method 

By subtraction of noise autocorrelation sequence from the 

autocorrelation of noisy speech, some peaks will be added  

to the estimated autocorrelation sequence of clean speech 

signal, which is caused by valleys of the noise 

autocorrelation sequence. To reduce the effects of these 

peaks, we use an overestimation parameter.  

Therefore, the estimated autocorrelation sequence of 

noise is modified by multiplying parameter a  by 

),( kmrvv , where a  is the overestimation parameter. 

2.4 Mean and Variance Normalization of Energy and 

Cepstrum Vector 

As an extra step to further boost the robustness of speech 

recognition, we have used the signal energy instead of its 

logarithm in the feature vector and applied normalization to 

the mean and variances of the cepstral and energy 

parameters. This approach has led to substantial 

improvements in the system recognition performance in 

previous research [10]. Here, we will test its suitability to 

be combined with our autocorrelation-based approach. 

3. PROPOSED ALGORITHM 

In this section, we describe the feature extraction algorithm 

based on our proposed method for the consideration of 

cross correlation and overestimation parameter plus the 

mean and variance normalization of energy and cepstal 

parameters and finally setting of the parameters. 

3.1 Inserting Cross Correlation term in ANS Method 

As we mentioned, ANS does not consider the cross 

correlation effect between noise and clean speech signal. 

Here, we will describe the algorithm of our proposed 

Kernel method to overcome this problem of ANS. In order 

to implement the Kernel method we present the following 

procedure to extract speech features.  

1. Frame blocking and pre-emphasizing. 

2. Hamming windowing. 

3. Calculation of the unbiased autocorrelation sequence of 

noisy speech signal. 

©2007 EURASIP 2357

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



4. Estimation of noise autocorrelation sequence using a few 

initial frames of each utterance. 

5. Calculation of the cross-correlation term between noisy 

speech signal and noise. 

6. Subtracting )),(),,(( kmkmrM θ  times autocorrelation 

sequence of noise from the autocorrelation sequence of 

noisy speech signal according to equation (9). 

7. Calculation of Fast Fourier Transform (FFT). 

8. Calculating the logarithms of mel-frequency filter bin 

values. 

9. Cepstral parameter calculation by applying discrete 

cosine transform (DCT) to the resulting sequence of step 

8.  

10. Dynamic cepstral parameter calculations. 

 

Most of the steps in this algorithm are the same as the 

normal MFCC calculations. Only steps 3 to 6 are newly 

added steps. These steps include the calculation of the 

autocorrelation sequence of the noisy signal, estimation of 

the noise autocorrelation sequence, calculation of the cross 

correlation between noisy speech and noise, and calculating 

and inserting )),(),,(( kmkmrM θ  into (9).  

3.2 Setting of Parameters 

For the estimation of the noise autocorrelation sequence, we 

used the first 20 frames of the noisy signals from each 

utterance in Aurora2 corpus. As mentioned in [7], this 

number of frames has shown the best recognition rate in 

comparison to other numbers. We used an SNR-adaptive 

overestimation parameter in our experiments. The SNR was 

calculated as  
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where N is the Fourier transform length and )(kY and 

)(ˆ kV are Fourier transforms of noisy signal and noise 

respectively. After SNR calculation we have used Figure 3 

to calculate overestimation parameter a . 

4.  EXPERIMENTAL EVALUATIONS 

Our proposed approach was implemented on Aurora2 

recognition task [12]. The pre-emphasis coefficient was set 

to 0.97. For each speech frame, a 23-channel mel-scale 

filter-bank was used. The feature vectors for Kernel method 

were composed of 12 cepstral and log-energy parameters 

(except for the case shown with MVN where energy was 

used), together with their first and second order derivatives 

(39 coefficients in total). All model creation, training and 

tests in all our experiments have been carried out using 

HTK [13].  

In Figure 4, the results obtained using MFCC, RAS, 

ANS and our proposed Kernel, Kernel with overestimation 

parameter named Kernel+OEP and Kernel with 

overestimation parameter and normalization of mean and 

Variance of energy and cepstral parameters named 

 Kernel+OEP+MVN are shown. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Variation of a  with SNR on Aurora2 corpus. 

According to this figure, Kernel has led to better 

results in comparison to MFCC, RAS and ANS methods for 

all test sets. Although the amount of improvement is not 

high, these results indicate the effectiveness of the cross 

correlation term in the calculation of the estimated 

autocorrelation of clean speech signal. By applying 

overestimation parameter on the Kernel method we have 

obtained better results than Kernel. The best results were 

obtained by applying mean and variance normalization of 

energy and cepstral parameters on the Kernel+OEP method. 

Also Table 1 shows the average recognition rates obtained 

for each test set of Aurora2 for MFCC, RAS, ANS, Kernel, 

Kernel+OEP and Kernel+OEP+MVN methods and also 

percentage of improvements in comparison to the baseline 

MFCC method. 

As shown in Figure 4, the recognition rates using 

MFCC is seriously degraded in lower SNRs, while RAS, 

ANS and Kernel are more robust to different noises with 

Kernel+OEP+MVN outperforming all the others. As seen 

in Figure 4, in lower SNRs, the recognition rate of our 

proposed method is much better than MFCC. 

5.  CONCLUSION 

In this paper we presented the results of a modification to a 

previously proposed successful autocorrelation-based 

method, where the cross correlation error term and 

overestimation parameter are included. 

As it is clear from the results obtained on Aurora2, the 

cross correlation term is a rather important parameter in 

autocorrelation-based feature extraction. Its effectiveness in 

such approaches has been shown in this paper. Also, 

overestimation parameter has been found useful in noise 

autocorrelation estimation. Energy and cepstral mean and 

variance normalization has also been found useful in 

combination with the above-mentioned autocorrelation-

based approaches. The combination of these approaches has 

led to substantial improvements in the recognition 

performance in unmatched conditions, in comparison to the 

baseline.  

Apparently, other methods for cross correlation 

estimation are also available. Finding the best of such 

methods can be taken into account in future research.  
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Figure 4 – Average recognition rates on Aurora 2 task. From top left: Test set a, Test set b and Test set c. The results 

correspond to MFCC, RAS, ANS, Kernel, Kernel+OEP and Kernel+OEP+MVN methods. 

Table 1 – Comparison of Average recognition rates for 

various feature types on three test sets of Aurora 2 task. 

Average Recognition Rate (%) 
Feature type 

Set A Set B Set C 

MFCC 61.13 55.57 66.68 

RAS 66.77 (14.51%) 60.94 (12.09%) 71.81 (15.40%) 

ANS 77.10 (41.09%) 74.32 (42.20%) 83.61 (50.81%) 

Kernel 78.90 (45.72%) 75.88 (45.71%) 84.53 (53.57%) 

Kernel+OEP 80.05 (48.68%) 77.86 (50.17%) 85.40 (28.07%) 

Kernel+OEP+MVN 82.69 (55.47%) 83.21 (62.21%) 86.42 (59.24%) 
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