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ABSTRACT
This paper presents a novel effective method for denoising of im-
ages corrupted by signal-dependent noise. Denoising is performed
by coefÞcient shrinkage in the shape-adaptive DCT (SA-DCT)
transform-domain. The Anisotropic Local Polynomial Approxima-
tion (LPA) - Intersection of ConÞdence Intervals (ICI) technique is
used to deÞne the shape of the transform�s support in a pointwise
adaptive manner. The use of such an adaptive transform support en-
ables both a simpler modelling of the noise in the transform domain
and a sparser decomposition of the signal. Consequently, coefÞ-
cient shrinkage is very effective and the reconstructed estimate�s
quality is high, in terms of both numerical error-criteria and visual
appearance, with sharp detail preservation and clean edges. Sim-
ulation experiments demonstrate the superior performance of the
proposed algorithm for a wide class of noise models with a signal-
dependent variance, including Poissonian (photon-limited imag-
ing), Þlm-grain, and speckle noise.

1. INTRODUCTION

In many applications the observed signal is corrupted by a signal-
dependent noise. The most widely encountered models are Poisson,
Þlm-grain, multiplicative, and speckle noise. Their common feature
is that the variance of the noise is directly related to the true-signal�s
intensity. In particular, because of the inherent �photon-counting�
process within digital imaging sensors, the noise found in digital
images is signal-dependent, with brighter parts of the image having
a larger noise variance, and typically following a Poissonian distri-
bution.

Starting with classical Þlters, such as those by Lee, Kuan, and
Frost, a number of adaptive approaches for signal-dependent noise
removal have been developed and proposed, in spatial (e.g., [7],
[13], [2]) as well as in transform domain (e.g., [15], [16], [12], [3]).

In this paper we present a novel effective transform-based
method for denoising of images corrupted by signal-dependent
noise. Denoising is performed by coefÞcient shrinkage in the
Shape-Adaptive DCT (SA-DCT) [14] transform-domain. The
Anisotropic Local Polynomial Approximation (LPA) - Intersection
of ConÞdence Intervals (ICI) technique [10, 9] is used to deÞne the
shape of the transform�s support in a pointwise adaptive manner.
On such adaptive supports the signal is smooth and nearly constant,
allowing for a simpler modelling of the noise within each trans-
form support and enabling a sparser decomposition of the signal
in the transform domain. Thus, coefÞcient shrinkage (e.g., hard-
thresholding and Wiener Þltering) can be employed directly, ac-
curately, and very effectively. As a result, the reconstructed esti-
mate�s quality is high, in terms of both numerical error-criteria and
visual appearance. In particular, thanks to shape-adaptive transform
supports, the estimates exhibit sharp detail preservation and clean
edges.

This work was supported by the Finnish Funding Agency for Technology
and Innovation (Tekes), AVIPA2 project, and by the Academy of Finland,
project No. 213462 (Finnish Centre of Excellence program 2006 - 2011).

The key element of our approach to signal-dependent noise is
the use of a locally adaptive estimate of the noise variance, an es-
timate which is progressively reÞned during the various stages of
the algorithm. The presented method generalizes and extends both
the Pointwise SA-DCT Þlter [4] (originally developed for denoising
of additive white Gaussian noise (AWGN)) and the Adaptive-Size
Block-DCT (AS B-DCT) algorithm [3] (for signal-dependent noise
removal with adaptive-size block transforms), recently proposed by
authors.

The rest of the paper is organized as follows. In the next sec-
tion we introduce the general signal-dependent noise model and
the notation used throughout the paper. The algorithm is then pre-
sented in detail: construction of the adaptive-shape support, hard-
thresholding in SA-DCT-domain, aggregation of overlapping local
estimates, and empirical Wiener Þltering in SA-DCT domain. The
last section is devoted to experimental results for removal of Pois-
sonian (photon-limited imaging), Þlm-grain, and speckle noises.

2. PRELIMINARIES

2.1 Signal-dependent noise model

We consider observations z(x), x ∈ X ⊂ Z2, with the expectations
E{z(x)} = y(x) ≥ 0, where the errors (noise) η(x) = z (x)− y (x)
are independent and the variance of these observations is modeled
as

σ2z (x)= var{z(x)} = var{η(x)} = ρ(y(x)), (1)

ρ being a given positive function of y called the variance function.
For example, ρ(y) = y, ρ(y) = y2, and ρ(y) = !Kyα"2 for the
Poisson, gamma, and Þlm-grain observation models, respectively.

The problem is to reconstruct the true image y from the noisy
observations z.

2.2 Shape-Adaptive DCT transform and notation
The SA-DCT [14] is computed by cascaded application of one di-
mensional varying-length DCT transforms Þrst on the columns and
then on the rows that constitute the considered region. In our im-
plementation, we use the orthonormal SA-DCT transform (obtained
using orthonormal 1-D DCT transforms) with mean (i.e., DC) sep-
aration [11].

We denote by TU : U→ VU the orthonormal SA-DCT trans-
form obtained for a region U ⊂ X , where U = {g :U→R} and
VU = {ϕ : VU →R} are function spaces and VU ⊂ Z2 indicates
the domain of the transform coefÞcients. Let T−1U : VU →U be the
inverse transform of TU .

Given a function f : X → R, a subset U ⊂ X , and a function
g : U → R, we denote by f|U : U → R the restriction of f on U ,
f|U (x)= f (x) ∀x ∈U , and by g|X : X→R the zero-extension of
g to X ,

#
g|X

$
|U = g and g

|X (x)= 0 ∀x ∈ X \U . The characteris-
tic (indicator) function of U is deÞned as χU = 1|U |X . We denote
by |U | the cardinality (i.e. the number of its elements) of U . The
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Figure 1: LPA-ICI anisotropic neighborhoods. One-dimensional directional LPA kernels are used for 8 directions. The anisotropic neighbor-
hoodU+x is constructed as the polygonal hull of the adaptive-scale kernels� supports (left). Some examples of the anisotropic neighborhoods
Ũ+x used for SA-DCT Þltering of the Peppers image (middle) corrupted by Poissonian noise (χ=0.1). The plot on the right shows cross-
sections (column 87) of the true image y, of the noisy observation z, and of the Pointwise SA-DCT estimate ŷwi. The signal-dependent
nature of the noise is clearly visible.

mean value of f on U is mU ( f ) = 1|U |
%
x∈U f (x). The symbol

�~� stands for the convolution operation.

3. ALGORITHM

The overall algorithm comprises two stages. The Þrst stage (Sec-
tions 3.1.1-3.1.3) is based on hard-thresholding. The second stage
(Sections 3.2.1-3.2.3) is based on empirical Wiener Þltering, using
the hard-thresholding estimate obtained in Section 3.1.3 as a refer-
ence estimate.

The Þrst step in each stage employs the Anisotropic LPA-ICI
technique [10, 9] in order to identify adaptive neighborhoods where
the image can be assumed to be locally smooth (polynomial Þt) and
nearly constant.

3.1 Stage 1: Hard-thresholding in Pointwise SA-DCT domain
3.1.1 Adaptive-shape neighborhood

We initialize the algorithm with a simple, rough estimate σ̂2z of the
variance σ2z obtained as the variance function evaluated on the noisy
data, σ̂2z = ρ (|z|).

For every speciÞed direction θk , k = 1, . . . ,K , a varying-scale
family of 1-D directional-LPA convolution kernels {gh,θk }h∈H
is used to obtain a corresponding set of directional varying-
scale estimates {ŷh,θk }h∈H , ŷh,θk = z ~ gh,θk , h ∈ H , where
H ⊂ R+ is the set of scales. For these 1-D kernels, the
length of the support coincides with the value of the scale.
The pointwise standard-deviations of the estimates ŷh,θk are es-

timated as σ̂ ŷh,θk =
&
σ̂2z ~ g2h,θk , h ∈ H . Thus, for each point

(pixel) x ∈ X we obtain a sequence of conÞdence intervals'(
ŷh,θk (x)−,σ̂ ŷh,θk (x), ŷh,θk (x)+,σ̂ ŷh,θk (x)

)*
h∈H , where , is

a positive threshold parameter. These intervals are then compared
according to the ICI rule [6, 8], and as a result an adaptive scale
h+ (x,θk) ∈ H is deÞned for every x ∈ X . Precisely, the adaptive
h+ (x,θk) is deÞned as the largest scale h such that the intersec-
tion of all conÞdence intervals corresponding to scales smaller than
h is non-empty. The procedure is repeated for all speciÞed direc-
tions. Thus, for a Þxed x ∈ X we have K directional adaptive scales
h+ (x,θk), k = 1, . . . ,K .

In our implementation, we use K = 8 directions and
construct the adaptive neighborhood Ũ+x of x as Ũ+x ='
v ∈ X : (x−v) ∈U+x

*
, where U+x is the polygonal hull of the

supports of the adaptive-scale kernels
'
gh+(x,θk ),θk

*8
k=1. Figure 1

illustrates (left) how the neighborhoodU+x is constructed and shows
(middle) some examples of these neighborhoods for a noisy image

corrupted by Poissonian noise. Observe how these neighborhoods
adapt to edges and variations in the image intensity and that in each
neighborhood the underlying image is smooth and nearly constant.

3.1.2 Hard-thresholding in SA-DCT domain: local estimates

For every neighborhood Ũ+x , x ∈ X , we construct a local estimate
ŷŨ+x : Ũ

+
x → R of the signal y by hard-thresholding in SA-DCT

domain.
The typically encountered variance functions ρ, such as those

mentioned in Section 2.1, are smooth functions of their argument
y. As a consequence, on neighborhoods where the signal is nearly
constant, so is its variance. It means that with a good approximation,
the variance can be assumed to be constant when the transform�s
support is restricted to a region of signal uniformity such as the
adaptive neighborhood Ũ+x . Thus, locally, the hard-thresholding
can be performed as in the standard case [4] where the variance
is everywhere constant, provided that a locally adaptive estimate
σ̂ 2z
#
Ũ+x

$
of the variance of the noise in Ũ+x is used.

Such a locally adaptive σ̂2z
#
Ũ+x

$
can be obtained from the

mean mŨ+x (z) through the variance function as σ̂
2
z
#
Ũ+x

$
=

ρ
#+++mŨ+x (z)+++$. For any given neighborhood Ũ+x , this adaptive vari-
ance is a constant. Hence, the local estimate ŷŨ+x is calculated as

ŷŨ+x = T
−1
Ũ+x

#
ϒx
#
TŨ+x

#
z|Ũ+x −mŨ+x (z)

$$$
+mŨ+x (z), (2)

where ϒx is a hard-thresholding operator based on the threshold,
σ̂2z
#
Ũ+x

$#
2ln |Ũ+x |+1

$
. (3)

This threshold is essentially Donoho�s �universal� threshold using
the locally adaptive variance estimate σ̂ 2z

#
Ũ+x

$
.

3.1.3 Global estimate as aggregation of local estimates

The Anisotropic LPA-ICI provides an adaptive neighborhood Ũ+x
for every x ∈ X . Neighborhoods corresponding to adjacent points
are usually overlapping, thus the local estimates

'
ŷŨ+x

*
x∈X (2)

constitute an overcomplete representation of the image. In order
to obtain a single global estimate ŷ : X → R deÞned on the whole
image domain, all the local estimates (2) are averaged together us-
ing adaptive weights wx ∈R in the following convex combination:

ŷ =
%
x∈X wx ŷŨ+x

|X%
x∈X wxχŨ+x

. (4)
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Figure 2: Peppers image: (from left to right) original image, noisy observation corrupted by speckle noise (MSE=4442, PSNR=11.6dB),
and Pointwise Shape-Adaptive DCT estimate ŷwi (MSE=193, PSNR=25.3dB).

Figure 3: Aerial image: (from left to right) original image, noisy observation corrupted by Þlm-grain noise (MSE=829, PSNR=18.9dB),
and Pointwise Shape-Adaptive DCT estimate ŷwi (MSE=142, PSNR=26.6dB).

Analogously to [4], the weightswx depend on the total sample vari-
ance of ŷŨ+x �thus, on the number N

har
x of non-zero coefÞcients af-

ter thresholding and on the local variance σ̂2z
#
Ũ+x

$
�and on the size

of the neighborhood |Ũ+x |:

wx =
σ̂−2z

#
Ũ+x

$
#
1+Nharx

$
|Ũ+x |

. (5)

3.2 Stage 2: Wiener Þltering in Pointwise SA-DCT domain
3.2.1 Improved adaptive-shape neighborhood

The estimate of the variance σ̂2z used in Section 3.1.1 (calculated
from z through the variance function ρ) is indeed rough. A bet-
ter estimate σ̂2z can now be calculated from the above ŷ as σ̂

2
z =

ρ
!++ŷ++". The Anisotropic LPA-ICI approach is used once more to
deliver more accurate adaptive scales. We modify slightly the pro-
cedure from Section 3.1.1, in that the LPA estimates {ŷh,θk }h∈H
are now calculated not from z but from ŷ (4), as the convolution
ŷh,θk = ŷ ~ gh,θk , h ∈ H . The standard-deviations needed for
the construction of the conÞdence intervals are calculated again as
σ̂ ŷh,θk

=
&
σ̂2z ~ g2h,θk , h ∈ H , with σ̂

2
z = ρ

!++ŷ++". As a result of
the ICI rule, we obtain, for each x ∈ X , the new directional adap-
tive scales h+ (x,θk), k = 1, . . . ,K , and thus the corresponding
adaptive-shape neighborhood Ũ+x .

3.2.2 Wiener Þltering in SA-DCT domain: local estimates

Using the estimate ŷ (4), the empirical Wiener Þlter in the SA-DCT
domain works as follows. For a Þxed x , let ϕz,x : VŨ+x → R and
ϕ ŷ,x : VŨ+x →R be, respectively, the SA-DCT (on Ũ+x ) coefÞcient
of z and ŷ, calculated as

ϕz,x = TŨ+x

#
z|Ũ+x −mŨ+x (z)

$
, (6)

ϕ ŷ,x = TŨ+x

#
ŷ|Ũ+x −mŨ+x (z)

$
, (7)

where the mean mŨ+x (z) of z is subtracted before applying the
transform. The localWiener estimate ŷwi

Ũ+x
is deÞned as

ŷwi
Ũ+x

= T−1
Ũ+x

!
ωxϕz,x

"+1 xmŨ+x (z) , (8)

where ωx ∈ VŨ+x and1 x ∈R are respectively the Wiener attenua-
tion factors for ϕz,x and for the subtracted mean value mŨ+x (z),

ωx =
ϕ2ŷ,x

ϕ2ŷ,x +σ2x
, 1 x =

m2
Ũ+x

!
ŷ
"

m2
Ũ+x

!
ŷ
"+ σ̂2z #Ũ+x $/ |Ũ+x | , (9)

and σ̂ 2z
#
Ũ+x

$
is a local adaptive estimate of the variance of z in Ũ+x

calculated as ρ
#+++mŨ+x !ŷ"+++$.
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Figure 4: Cameraman image: (from left to right) original image, noisy observation corrupted by Poissonian noise (χ = 30/255, MSE=1015,
PSNR=18.1dB), and Pointwise Shape-Adaptive DCT estimate ŷwi (MSE=100, PSNR=28.1dB).

Figure 5: Cameraman image: (from left to right) noisy observation corrupted by Poissonian noise (χ = 60/255, MSE=504, PSNR=18.1dB),
AS B-DCT estimate [3] (MSE=70, PSNR=29.7dB), and Pointwise Shape-Adaptive DCT estimate ŷwi (MSE=68, PSNR=29.8dB).

3.2.3 Final global estimate as aggregation of local estimates

The global estimate ŷwi can be obtained analogously as in (4), using
the convex combination with the adaptive weights wwix :

ŷwi=
%
x∈X wwix ŷwiŨ+x

|X%
x∈X wwix χŨ+x

, wwix =
σ̂−2z

#
Ũ+x

$
#
12x +

%
VŨ+x

ω2x
$
|Ũ+x |

. (10)

Similarly to (5), the termσ̂ 2z
#
Ũ+x

$!
12x+

%
VŨ+x

ω2x
"
in the adaptive

weights corresponds to an estimate of the total sample variance of
ŷwi
Ũ+x
.
The Pointwise SA-DCT results which we present in this paper

correspond to the ŷwi estimate (10).

3.3 Complexity
The presented method for signal-dependent noise removal inher-
its the same low computational complexity of the standard Point-
wise SA-DCT developed for AWGN (we refer the reader to [4]
for a detailed analysis of the computational complexity of the stan-
dard Pointwise SA-DCT algorithm). In fact, the extra operations
in this generalized algorithm are essentially only the convolutions
needed to calculate σ̂ ŷh,θk , and the Anisotropic LPA-ICI in the sec-
ond stage of the algorithm. Both are computationally negligible
compared to the multiple forward and inverse SA-DCT transforms
performed in Sections 3.1.2 and 3.2.2. The locally adaptive variance

estimates σ̂ 2z
#
Ũ+x

$
are also calculated �almost for free�, since the

local meansmŨ+x (z) andmŨ+x
!
ŷ
"
are anyway required by standard

algorithm for AWGN.

4. EXPERIMENTAL RESULTS

We show experimental results for three common types of signal-
dependent noise: the �scaled� Poisson noise, χz∼P (χy) , χ∈R+,
the Þlm-grain noise, z = y+Kyαη, K,α∈R+ and η∼N (0,1), and
the �multiple-look� speckle noise, z = L−1%L

i=1 y3i , 3i ∼ E (β),
β ∈R+. The calligraphic letters P , N , and E denote, respectively,
the Poisson, Gaussian, and exponential distributions. For the above
observation models, the variance functions ρ (y) = σ2z are ρ (y) =
y/χ , ρ (y) = K 2y2α , and ρ (y) = y2β/L, respectively. The true
signal y is assumed to have range [0,255].

Firstly, in Table 1 we give a comparison for the simulations pre-
sented in [13] for the above noise models with parameters χ=0.1,
K=3.3, α=0.5, L=4, and β=1. In the table our results are compared
against the adaptive-neighborhood Þlter [13], the noise-updating re-
peatedWiener Þlter [7] (as quoted in [13]), the recursive anisotropic
LPA-ICI technique [2, 5], and the AS B-DCT algorithm [3].

Next, in Table 2 we compare our results for removal of Poisso-
nian noise (χ = 30

255 ,
60
255 ,

90
255 ,

120
255 ) against those obtained by two

other transform-based methods [15],[12] recently developed specif-
ically for this type of noise, by the recursive anisotropic LPA-ICI
technique, and by the AS B-DCT algorithm.
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noise type noisy [7] [13] [2, 5] [3] P. SA-DCT
Poisson (χ=0.1) 1243 160 145 120 104 95
Film-grain 1351 169 150 123 109 97
Speckle 4442 372 378 286 225 193

Poisson (χ=0.1) 758 252 179 183 149 141
Film-grain 829 267 188 185 154 142
Speckle 1698 387 318 330 257 242

Table 1: MSE results for different noise types and denoising algorithms.

χ noisy [15] [12] [2, 5] [3] P. SA-DCT
30 / 255 1054 168 143 73 61 55
60 / 255 525 117 96 50 42 38
90 / 255 349 93 75 40 34 31
120 / 255 262 81 63 34 30 27
30 / 255 1015 199 154 136 107 100
60 / 255 504 140 97 89 70 68
90 / 255 336 113 74 70 55 53
120 / 255 254 97 61 60 46 45

Table 2: MSE comparison against algorithms for Poissonian noise.

The results in the tables show that the proposed algorithm out-
performs all other methods, for all considered noise models and
noise levels. In terms of MSE, the improvement is signiÞcant espe-
cially for higher noise.

Figures 2, 3, and 4 provide a demonstration of the visual qual-
ity of the proposed Pointwise SA-DCT technique. Edges and small
details are restored quite sharply, with very few noticeable arti-
facts. Figure 5 presents a comparison between denoised estimates
obtained by the AS B-DCT and by the Pointwise SA-DCT algo-
rithms. Although the numerical difference is marginal, the two es-
timates are visually quite different. The AS B-DCT estimate has
visible artifacts in the vicinity of sharp edges, and especially along
the diagonal ones; the Pointwise SA-DCT estimate presents instead
clean-cut edges that are comparable with those of the original image
(shown in Figure 4(left)), thanks to superior spatial adaptivity.

We conclude remarking that the proposed method based on lo-
cally adaptive variance estimates is superior to the simpler approach
where the noisy observations are preprocessed by a non-linear
variance-stabilizing transformation and then Þltered by an algo-
rithm for AWGN. In particular, let us consider the Poissonian noise
case and the procedure where the Anscombe transformation [1] is
employed to stabilize the variance and denoising is then performed
by the Pointwise SA-DCT algorithm [4] for AWGN, followed by
inverse Anscombe transformation. For this simpler approach the
MSE results are as follows: χ = 0.1 Peppers MSE=103, Aerial
MSE=153; χ = 30/255 Lena MSE=59, Cameraman MSE=105.
A comparison with the Tables 1 and 2 shows the improvement
achieved by the use of locally adaptive variances.
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