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ABSTRACT

In this paper, we present a computationally efficient algo-
rithm to form the well-known Capon spectral estimate. The
proposed implementation, which is formed using Levinson-
Durbin recursions, offers a computationally attractive alter-
native to existing techniques. The proposed algorithm allows
the spectral estimate to be formed in O(L2 +PL) operations,
where P denotes the number of frequency grid points to be
evaluated and L the filter length used. Numerical compar-
isons show that the algorithm is particularly efficient at find-
ing high-resolution estimates, especially for limited ranges
of frequencies.

1. INTRODUCTION

Spectral estimation finds applications in a wide range of
fields, and has received a vast amount of interest in the lit-
erature over the last century. Due to their inherent robustness
to model assumptions, there has lately been a renewed inter-
est in non-parametric spectral estimators (see, e.g., [1–3]).
Among the non-parametric approaches, the data-dependent
filterbank spectral estimators have many promising proper-
ties, allowing for very accurate, computationally efficient,
high-resolution estimates. In this paper, we examine the
problem of forming the classical Capon spectral estima-
tor [4, 5] in a computationally efficient manner. Given the
method’s wide usability, the recent literature contain several
interesting and efficient ways to form the spectral estimate,
see, for example, [6–14]. Herein, we propose a further refine-
ment of these methods, suggesting an efficient implemen-
tation based on the Levinson-Durbin (LD) recursions. The
proposed method offers a computationally attractive alterna-
tive to the classical Musicus’ algorithm [6], especially when
forming the spectral estimate of a limited number of frequen-
cies, say Pk. Whereas Musicus’ algorithm allows for an effi-
cient evaluation of the entire frequency range using the fast
Fourier transform (FFT), it is often numerically preferable to
use a direct method to form the estimate over a limited range
of frequencies. Here, we present an efficient reformulation
of Musicus’ algorithm, allowing the local estimates to be
formed directly in O(L2 + PkL) operations, where L denotes
the used filter length. The paper is organised as follows; in
the next section, we briefly review the Capon spectral es-
timator and Musicus’ algorithm, followed in Section 3 with
the derivation of the proposed algorithm. Section 4 illustrates
the complexity gain offered by the proposed method. Finally,
Section 5 concludes the paper.
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2. THE CAPON SPECTRAL ESTIMATOR

Let {x(t); t = 0, . . . ,N− 1} denote the available (stationary)
data sequence of which the spectrum is to be estimated,
where N denotes the number of available data samples. As is
well-known, the Capon spectral estimate can be formed as

φω = h∗ωRLhω =
1

f∗L (ω)R−1
L fL(ω)

, (1)

where hω denotes the frequency dependent and data-
adaptive L-tap finite impulse response (FIR) filter,

hω = [ hω(0) . . . hω(L−1) ]T , (2)

with (·)T denoting the transpose, formed as

hω = argmin
hω

h∗ωRLhω =
R−1

L fL(ω)
f∗L (ω)R−1

L fL(ω)
(3)

for a generic frequency ω . Here,

RL = E{xL(t)x∗L(t)}, (4)

with E{·} and (·)∗ denoting the expectation and the conju-
gate transpose, respectively, and

fL(ω) =
[

1 e jω . . . e jω(L−1)
]T

, (5)

xL(t) = [ x(t) . . . x(t +L−1) ]T , (6)

where M = N−L + 1. The choice of the filter length L re-
flects the user’s preferences, with larger filter lengths yield-
ing higher resolution, but also higher variance, in the re-
sulting spectral estimate (see, e.g., [1] for further details on
the Capon spectral estimator). As is clear from (1), espe-
cially when noting the positive definite Toeplitz structure of
RL, the Capon spectral estimate has a very strong inherent
structure, allowing for efficient implementations. In Musi-
cus’ algorithm [1, 6], this is exploited by forming a struc-
tured estimate of R−1

L via the LD recursion and the Gohberg-
Semencul formula, as well as then evaluating the quadratic
form in the denominator of (1) using the FFT. Related effi-
cient implementations based on the Cholesky factorisation or
the displacement structure of R−1

L have also been presented
in, for instance, [8, 11], with extensions to two-dimensional
and time-recursive formulations in [7, 9, 10, 12].
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2.1 The Musicus Algorithm
To put our proposed algorithm in context, we will here briefly
review Musicus’ algorithm, which essentially relies on the
efficient calculation of the forward linear prediction (FLP)
coefficients, say aL, from a given sample frame of data of
length N. The popular LD algorithm is one of the most ef-
ficient and stable methods for this purpose, forming the esti-
mated FLP coefficients as

a0,0 = 1 (7)
γ0 = r(0) (8)

where r(k) denotes the kth lag of the autocorrelation se-
quence, i.e., r(k) = E{x(t)x∗(t + k)}. Then, for ` = 1, . . . ,L,

κ` = − 1
γ`−1

`−1

∑
n=0

r(n− `)an,`−1

an,` =





1 for n = 0
an,`−1 +κ`a∗`−n,`−1 for n = 1, . . . , `−1
κ` for n = `

γ` = γ`−1(1−|κ`|2)
where κ` denotes the `th reflection coefficient. We note that
there are many other well known approaches to determine the
FLP coefficients, several which may offer improved spectral
estimates, such as Burg’s method and the modified covari-
ance method (see, e.g., [1]), although it should be remarked
the achieved gain is usually at the expense of additional com-
putational complexity. Without loss of generality, we will as-
sume that the FLP coefficients have been obtained via the LD
algorithm, merely noting that the evaluation of the FLP co-
efficients in itself offer some options for the user. Using the
estimated FLP and reflection coefficients, Musicus algorithm
then correlates these, i.e., for k = 0, . . . ,L,

µ(k) =
1
γL

L−k

∑
n=0

(L+1− k−2n)an,La∗n+k,L (9)

and as µ(k) exhibits conjugate symmetry about k = 0,

µ(k) = µ∗(−k) for k =−L, . . . ,−1. (10)

The Capon power spectral estimate, φω , given in (1), can then
be calculated for any given relative frequency, ω , as

φω =
1

∑L
k=−L µ(k)e jωk

. (11)

When the full spectrum is required, this procedure is ben-
eficially undertaken using a FFT of length P, where P is
represents the desired number of frequency grid points. In
such cases, the computational complexity of evaluating (11)
is about O(P log2 P) complex operations. However, if only
a few frequency grid points are of interest, it would be more
efficient to calculate them directly using (11) alone. Such
an evaluation would require O(L) for each frequency grid
point of interest. Hence, for sufficiently short ranges and
suitably short values of L, this procedure would be prefer-
able. Notwithstanding, we will see in the next section, how
by exploiting the LD recursions, one may further improve the
efficiency of such an implementation.

3. THE PROPOSED IMPLEMENTATION

Reminiscent of the Musicus algorithm, we form the follow-
ing set of recursions. First, we consider the vector containing
the L+1 recent samples,

xL+1(t) = [ x(t) . . . x(t +L) ]T , (12)

suggesting the corresponding (L + 1)× (L + 1) covariance
matrix

RL+1 = E{xL+1(t)x∗L+1(t)} (13)

=
[

r(0) r∗L
rL RL

]
(14)

=
[

RL r̃L
r̃∗L r(0)

]
(15)

where

rL = [ r(1) r(2) . . . r(L) ]T (16)

r̃L = [ r(L) r(L−1) . . . r(1) ]T (17)

Using the Schur complement, one may express R−1
L+1 as

R−1
L+1 =

[
R−1

L + γ−1
L bLb∗L −γ−1

L bL
−γ−1

L b∗L γ−1
L

]
(18)

where
bL = R−1

L r̃L (19)

is the backward predictor of length L,

γL = r(0)− r̃∗LbL = r(0)−r∗LaL (20)

is the prediction error energy, and

aL = JbL (21)

is the forward predictor, with J denoting the exchange ma-
trix. Furthermore, we note that the Fourier vector of length
L+1 can be decomposed as

fL+1(ω) =
[

1 e jω . . . eiωL
]T (22)

=
[

fT
L (ω) e jωL

]T (23)

=
[

1 e jω fT
L (ω)

]T (24)

Pre- and post-multiplying R−1
L+1, using the expression in (18),

with f∗L+1(ω) and fL+1(ω), respectively, yields

ψω = f∗L+1(ω)R−1
L+1fL+1(ω)

= f∗L (ω)R−1
L fL(ω)+ γ−1

L

∣∣f∗L (ω)bL− e− jωL∣∣

=
L

∑̀
=0

γ−1
`

∣∣∣f∗` (ω)b`− e− jω`
∣∣∣ , (25)

where b0 = 0 and γ0 = r(0), implying that the Capon spectral
estimate, φω , formed in (1), can be written as

φω =
1

∑L−1
`=0 γ−1

`

∣∣f∗` (ω)b`− e− jω`
∣∣ , (26)
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Figure 1: Numerical gain of new approach vs. Musicus’ al-
gorithm for a limited range of frequencies Pk. Here, N = 256,
P = 1024 and 1≤ L≤ 128.

which nicely links the autoregressive (AR) and the Capon
spectral estimators in a way similar to Musicus’ algorithm.
As is well known, γ` and b` can be directly computed us-
ing the LD algorithm, implying that (26) allows the Capon
spectral estimate for P frequency grid points to be formed
in O(PL2) operations. Recalling that Musicus’ algorithm
only requires O(L2 + P log2 P) operations, this seems to be
an unattractive approach to implement φω . However, the ex-
pression in (26) can be further simplified by continuing the
recursions. Let

ν` = f∗` (ω)b`, (27)

and note that the backward predictor can be formed as

b` =
[

0
b`−1

]
−κ`J`

[
bc

`−1−1

]
, (28)

where the `th reflection coefficient, κ`, is formed as

κ` = γ−1
`−1

[
r(`)−b∗`−1r`−1

]
(29)

and γ` is updated accordingly,

γ` = γ`−1(1−|κ`|2). (30)

Pre-multiplying (28) with f∗` (ω) yields

ν` = e− jω ν`−1−κ`f∗` (ω)J`

[
bc

`−1−1

]
. (31)

Noting that
J`f`(ω) = e jω(`−1)f c

` (ω), (32)

where (·)c denotes the conjugate, one can further simplify
(31), obtaining

ν` = e− jω ν`−1−κ`

{
e jω(`−1)νc

`−1−1
}

, (33)

which allows ν`, for ` = 0, . . . ,L− 1, to be formed in
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Figure 2: Trade-off point whereby FFT becomes preferred
to direct approach for Musicus’ algorithm for three different
grid spacings, P = {256, 512 & 1024}.

O(L) operations, reducing the complexity of forming (26)
to O(PL + L2) operations for the full spectrum. The power
spectrum estimate for each component, φω , can then be de-
termined with just, γ` and ν`, using

φω =
1

∑L−1
`=0 γ−1

` |ν`− e− jω`|2 . (34)

It can easily be seen that the procedure in (33) and (34) re-
quires just O(PkL) operations, giving a total computational
load of just O(PkL + L2) operations for Pk frequencies of
interest. It should be noted that the presented algorithm is
reminiscent to the one described in [14], although the here
presented approach is focused on yielding efficiency for a
limited range of frequency bins.

4. COMPARISON OF COMPUTATIONAL
COMPLEXITY

Herein, we compare the computational burden of the pre-
sented method to that of Musicus’ algorithm, focusing on
for short frequency ranges, i.e., where Pk ¿ P. To clarify
the main differences, it is helpful to break down the con-
stituent parts of each method and ignore those procedures
which are common to both. Hence, we can dispense with the
computation required for the determination of the autocor-
relation sequence r(k), for k = 0, . . . ,L− 1, as this is com-
mon to both approaches. Furthermore, we can discount the
numerical load of the LD algorithm, requiring about O(L2)
operations, as this procedure is shared by both methods.
We can then state explicitly the number of computations re-
quired for the remainder of each method to determine the
value of the power spectral component at a single frequency.
For Musicus’ method, we require the evaluation of (9) and
(11), requiring about (L2/2 + Pk(2L + 1)) complex opera-
tions. Whereas, for the proposed method, given the reformu-
lation of the summation, the corresponding evaluation only
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Figure 3: Gain ‘isobars’ for proposed vs. Musicus’ method
for various values of filter length, L and frequency grid
points, Pk, whilst P = 1024.

requires about PkL complex operations. The gain, in terms
of reduction of numerical burden, for the proposed method
is illustrated in Figure 1. If the desired number of frequency
grid points, Pk, start to approach that of the full frequency
range, totalling P grid points, and depending on the desired
filter length, L, then the original Musicus method using the
FFT may become numerically preferable. This effect is il-
lustrated in Figure 2. The lines represent the equilibrium or
trade-off point between the direct evaluation and the full FFT
for P = {256, 512 & 1024}. Below the lines (i.e., the bot-
tom left corner) is the region where the direct approach is
faster than applying the full length FFT. In fact, looking at
the lower two traces in Figure 1, there is a distinct ‘knee’
point, marked with a circle in the figure, due to switching to
the FFT method of evaluation when Pk is 80 and 160, for L is
greater than 64 and 32, respectively. It is interesting to note,
however, that the gain of the proposed method is still greater
than unity even when using the FFT with Musicus for rela-
tively large numbers of frequencies grid points, Pk, and filter
lengths, L. Finally, Figure 3 demonstrates that the gain of the
proposed method as compared to Musicus’ approach obeys
an approximate constant function of the product of the fil-
ter length, L, and the number of frequency bins of interest,
Pk. This is most clearly shown with logarithmic axes. Also,
we note from the figure that the gain increases for any given
combination of L and Pk as P increases. Hence, for large fil-
ter lengths, the method is only attractive for the case when it
is desired to evaluate the spectrum over a limited number of
frequency grid points. Likewise, for short filter lengths, the
method is preferable for even a larger number of frequency
grid points (or, depending on the desired frequency resolu-
tion, perhaps the entire spectrum).

5. CONCLUSIONS

In this paper, we have shown the development of a novel
computationally efficient algorithm to compute the Capon

spectral estimate. The method is reminiscent to Musicus’
classical algorithm, but exploit further recursions of the
Levinson-Durbin algorithm, enabling an efficient evaluation
of the spectrum over limited frequency regions. Numerical
evaluations illustrate the achievable complexity gain as com-
pared to Musicus’ algorithm.
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