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ABSTRACT

In this paper, we address the issue of ground clutter rejection for
the detection of slowly moving targets in a non sidelooking (NSL)
array configuration airborne radar. The classical space-time adap-
tive processing (STAP) such as the SMI or the eigencanceller-based
methods are computationally costly and require the estimation of
the clutter covariance matrix from secondary data. Howeverin
monostatic STAP airborne radar, the main consequence of theincli-
nation of the array is the range dependency of the clutter covariance
matrix. Several compensation methods exist but they are computa-
tionally complex or require the knowledge of the radar parameters.
We here investigate the use of range recursive subspace-based algo-
rithms of linear complexity inspired by existing time recursive array
processing and we show that they are able to track the range depen-
dency (non stationarity) of the data.

1. INTRODUCTION

A main issue in airborne radar signal processing is the detection and
the tracking of slowly moving targets. Indeed, a low velocity target
can be masked by the ground clutter generated by the radar plat-
form speed. Space-time adaptive processing (STAP) may improve
this detection by rejecting the ground clutter [1]. The conventional
fully adaptive STAP known as the sample matrix inversion (SMI)
method as well as the subspace-based eigencanceller are notactu-
ally used in practice because of their prohibitive computational cost
which prevents their real-time implementation [1]. That iswhy we
here focus on adaptive algorithms which may recursively compute
a subspace-based STAP rejector directly from the data with alinear
complexity. We here consider the context of a monostatic airborne
radar in a non sidelooking configuration. The radar antenna is an
uniformly spaced linear array antenna composed ofN half wave-
length spaced elements which is not aligned with the platform ve-
locity vector and transmits a train ofM pulses at a constant pulse
repetition frequency (PRF).L samples for each pulse repetition in-
terval (PRI) are collected to cover a range interval. A data cube is
constructed with bidimensional (sensor, pulse) snapshotsat differ-
ent ranges and is exploited to calculate with a STAP algorithm the
weights of the clutter rejection filter. In a sidelooking configura-
tion, the clutter covariance matrix involved in conventional STAP
algorithms is range independent and can then be estimated from
the secondary range cells. In a non sidelooking configuration, the
velocity misalignment changes the nature of the clutter andconse-
quently the techniques of rejection. Several compensationmethods
exist (see [2] and the reference in it) but they are computationally
complex or require the knowledge of the radar parameters. Wehere
propose, as an alternative, to use range recursive subspace-based al-
gorithms of linear complexity and we show that they are capable of
tracking the range dependency of the data. Next section describes
the signal model, the non sidelooking configuration and its conse-
quences. In section 3, the investigated range recursive algorithms
are presented. Simulation results and a discussion are given in sec-
tion 4. Concluding remarks are in section 5.

2. SIGNAL MODEL AND NON SIDELOOKING
CONFIGURATION

2.1 Signal Model

A space time snapshot at rangek in the presence of a target is given
by

x(k) = αtvt +xi+n(k)

whereαt is the unknown target amplitude,vt is the target steering
vector andxi+n(k) is the interference plus noise signal vector. Here
the Doppler is supposed to be unambiguous. The ground clutter is
here the only interference component and it is supposed unambigu-
ous in range. The target steering vector is defined by

vt = b(ϖt)⊗a(ϑt ) (1)

where

b(ϖt) = [1;ej2πϖt ; . . . ;ej(M−1)2πϖt ] (2)

is the temporal steering vector withϖt the target spatial frequency
and

a(ϑt) = [1;ej2πϑt ; . . . ;ej(N−1)2πϑt ] (3)

is the spatial steering vector withϑt the target Doppler frequency.
The interference plus noisexi+n = xc + xn is composed of a noise
vector xn supposed to be spatially and temporally white and a
ground clutter component

xc =
Nc

∑
i=1

αivc (ϑi ,ϖi)

αi is the amplitude of theith azimuth clutter patch andvc is defined
in the same way as (1), (2) and (3) withϑi andϖi being the Doppler
and spatial frequencies respectively. The optimum weightsof the
interference plus noise rejection filter is given by [1],

wopt = κR−1
i+n ·vt

κ is a scalar of normalization andRi+n = E
{

xi+nxH
i+n

}
= Rc +

Rn is the interference plus noise covariance matrix whereRc =
E
{

xcxH
c
}

and Rn = σ2I are the clutter and the noise space-time
covariance matrices, respectively.

In practiceRi+n is unknown and must be estimated from the
snapshots. The well-known SMI (sample matrix inversion) consists
in an estimation of the matrix by averaging over the secondary range
cells,

R̂i+n(k) =
1
K

N

∑
l=1,l,k

xl x
H
l (4)

wherek is the test range cell andK is the number of secondary range
cells. The SMI weight vector is then

wsmi = κR̂−1
i+nvt
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In a sidelooking configuration, the clutter covariance matrix is range
independent and can then be estimated from the secondary range
cells. This property is however no longer true in another configura-
tion.

2.2 Geometry of the NSL configuration

Figure 1 represents the considered system [1]. The radar antenna is
positioned on an airborne platform at the altitudeh and move with
constant velocityva. The ground clutter is split in rings of constant
rangeRc from the radar which are split themselves inNc patches
(hereNc = 180). Each clutter patch is described by its azimuthφc
and its elevationθc. In the non sidelooking configuration, the plat-
form velocity vectorva is not aligned with the radar antenna axis in-
volving a crab angle,φa. This configuration illustrates the majority
of the practical cases, as for example, radars using rotating antenna,
forward-looking airborne radars, etc. Also when side-mounted an-
tenna are used, an aircraft crab is used to mitigate the wind effects
[1].

The clutter spatial frequency and the normalized Doppler can
then be written

ϑc =
d ·cos(θc)

λ
sin(φc) (5)

and

ϖc =
2vaTr

λ
cos(α)

respectively, whered is the inter-element spacing,λ is the radar
wavelength andTr is the PRI. Letα be the cone angle

cos(α) = cos(θc)sin(φc +φa) (6)

cos(α) is the direction cosine between thex-axis and the unit vector
pointing from R to the clutter scatterer S. We obtain

sin(φc) =
cos(φa) ·cos(α)

cos(θc)
± γ (7)

where

γ =

√(
cos(α)

cos(θc)

)2

cos2 (φa)−

(
cos(α)

cos(θc)

)2

+sin2 (φa)

When usingsin(θc) = h
Rc and (5) , (7) gives

ϑc =
d
λ



cos(α)cos(φa)±sin(φa)

√

1−

(
h

Rc

)2

−cos2 (α)





(8)
Furthermore the normalized Doppler frequency is

ϖc =
d
λ

cos(α) (9)

With (6) and (9), (8) gives the relation which links the clutter spatial
frequency and the normalized Doppler

ϑc = ϖccos(φa)±
1
2

sin(φa)

√

1−

(
h

Rc

)2

−4ϖ2
c (10)

It appears from (10) that, in the sidelooking configuration,
φa = 0o, the relation between the Doppler and the spatial frequency
is independent of the range (Rc). In the non sidelooking configura-
tion, however, a range dependency is observed. Consequently, the
interference plus noise space time covariance matrix is also range
dependent. This is illustrated in Figure 2 where the clutterridges,
which represent the space-time repartition of the clutter power, are
composed of a set of ellipses for different rangesRc instead of being
a straight line independent ofRc.

This then implies a kind of non-stationarity of the data so that
the classical estimator (4) of the clutter covariance matrix is no
longer valid. Several methods of compensation ([2] and the ref-
erence within) have been proposed in the literature but theyeither
are too complex or require the knowledge of the radar parameters.
We investigate in the following section an alternative approach of
the problem.

3. RANGE RECURSIVE STAP ALGORITHMS

Adaptive-recursive algorithms have been used for a long time in
many areas of signal processing such as filtering, spectral analysis,
array processing, prediction, etc. and in many applications such as
channel equalization, noise cancellation, speech coding,etc. They
consist in recursively updating a weight vector at timek from the
weights vector obtained at timek−1 and by taking account of the
current snapshot. These algorithms generally involve lesscompu-
tational operations than their block counterparts and are known to
be able to track some kind of non-stationarity of the data. Also, we
here propose to apply some adaptive recursive subspace-based algo-
rithms already tested in array processing and spectral analysis [3],
[4], [5] and [7] in order to reduce the computational burden,to the
range dependent above mentioned STAP problem. In this section,
we briefly recall the key idea of each considered algorithm and the
resulting code of it.

3.1 PAST algorithm

For the PAST (Projection Approximation Subspace Tracking)al-
gorithm [3], a basis of the interference subspace is obtained as the
solution of the unconstrained minimization problem :

J(W) =
t

∑
k=1

β t−k
∥∥∥x(i)−W(t)W(t)Hx(i)

∥∥∥
2

(11)

wherex is the observed data vector andW is the estimated inter-
ference subspace basis andβ a forgetting factor, 0≤ β < 1. Using
the following approximationW(t)Hx(i)≈W(i−1)Hx(i) (11) is re-
duced to the exponentially weighted least square minimization:

J
′

(W(t)) =
t

∑
i=1

β t−i ‖x(i)−W(t)y(i)‖2

With y(i) = W(i−1)Hx(i) this cost function has a global minimum
which yields a non orthonormal basis of the interference subspace
and which may be attained by a RLS adaptive algorithm given in
table 1.

3.2 OPAST algorithm

The Orthogonal Projection Approximation Subspace Tracking
(OPAST) algorithm [4] is an orthonormalized version which avoids
the complex Gram-Schmidt orthonormalization and yields the algo-
rithm of table 1.

3.3 API and FAPI algorithms

The Approximated Power Iteration (API) and Fast Approximated
Power Iteration (FAPI) algorithms [5] derive from the power
Method [6]. A less restrictive approximation than for PAST is used.
Indeed it concerns the projection on the estimated subspaceinstead
of the estimated subspace itself:

W(i)W(i)H ≈W(i−1)W(i−1)H

The obtained subspace is found to be orthonormalized. The FAPI
algorithm is a fast implementation of API ( see [5]). API and FAPI
codes are exhibited in table 2.
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3.4 NIC algorithm

The Novel Information Criterion (NIC) algorithm [7] consists in
maximizing

J(W) =
1
2

(
tr
{

log
(

WHRxxW
)}
− tr

{
WHW

})

whereRxx = E
{

xxH
}

. This criterion presents a single global max-
imum 1

2 ∑n
i=1 log(λi−n) whereλ1, . . . ,λn are the eigenvalues of the

interference subspace. The corresponding RLS algorithm isgiven
in table 3.

3.5 remark

The above-mentioned algorithms have been selected among a wide
class of linear complexity subspace-based algorithm for their good
behavior in a previous work on array processing [9]. As it canbe
viewed on tables 1, 2, 3, the complexity burden isO(MN) instead
of O((MN)3) for SMI or eigencanceller. To run these algorithms,
the rank of the clutter space time covariance matrix is supposed to
be known. In a sidelooking configuration, according to Brennan’s
rule [1] it is equal toN +(M−1). In a non sidelooking case, this
rank is about doubled [1].

4. SIMULATION RESULTS

We here transpose the time recursive above-mentioned algorithms
to range recursive STAP in order to show whether they are capable
of compensating some range dependence (some non stationarity) of
the data. We discuss the performance of these algorithms in terms
of their SINR loss defined as follows.

SINRloss=
σ2 ·

∣∣wHvt
∣∣2

NM ·wHRi+nw

wherew is the weight vector calculated (according to each algo-
rithm). The optimum SINR loss is

SINRlossopt =
σ2 ·vH

t R−1
i+nvt

NM

For the analysis, a pulsed Doppler airborne monostatic radar in for-
ward looking configurationφa = 90o is considered. The platform
has an altitude of 9 km and is moving with a velocity of 100 m/s.
The operating frequency of the radar is 10 GHz with a PRF of 13
kHz. The radar bandwidth is 100 MHz. The array is composed of
12 uniformly spaced elements. 10 pulses are transmitted during a
CPI.

Figures 3 to 6 show a slice of SINR loss at spatial frequency
0 degree versus the normalized Doppler frequency employing240
training data (it correspond to 2NM) for the figures 3 and 4 and480
(4NM) for the figures 5 and 6. The secondary data are chosen before
the range test cell. The results are averaging over 20 Monte Carlo
trials. In the first and third simulations,Rc is equal to 9000 m. It in-
volves a nearly constant gap between the clutter ridges and thus the
non stationarity can be qualified of severe. In the two others, it is set
to 15000 m; the gap between the clutter ridges decreases overthe
simulation. Thus the non stationarity is lower. The range-recursive
algorithms outperform the SMI algorithm in any case. The different
tested algorithms are globally equivalent. However we can discuss
of their relative merits. We can differentiate the performances of
these algorithms according to the degree of non stationarity: in case
of a severe non stationarity (figures 3 and 4), PAST and OPAST al-
gorithms are outperformed by NIC, API and FAPI algorithms. On
the contrary, in case of a light stationarity (figures 5 and 6), NIC al-
gorithm is outperformed by the others. In conclusion, within these
algorithms FAPI and API algorithms outperformed the others. The
forgetting factor is chosen to be ideal for these non stationarities
equal to 0.8. More generally the range-recursive algorithms showed
good performance when the range dependence does not decrease

too fast. That’s why the ideal case is a good range resolution(be-
tween 1 and 3m). These algorithms must thus be used in case of
non sidelooking configuration with any crab angle and for X-band
or C-band radars.

Table 1PAST and OPAST Algorithms

Initialization : W(0)← IM×N , Z(0)← IN×N

for k = 1 to Nbr snapshotdo
PAST main section
y(k) = W(k−1)H ·x(k)
h(k) = Z(k−1) ·y(k)

g(k) = h(k)
β+yH (k)·h(k)

e(k) = x(k)−W(k−1) ·y(k)
PAST secondary section
Z(k) = 1

β · (Z(k−1)−g(k) ·y(k)H ·Z(k−1))

W(k) = W(k−1)+e(k) ·g(k)H

OPAST main section
γ(k) = 1

β+y(k)H ·h(k)

Z(k) = 1
β ·
(
Z(k−1)−g(k) ·y(k)H ·Z(k−1)

)

τ(k) = β 2

‖h(k)‖2
·

(
1√

β 2+‖γ(k)·e(k)‖2‖h(k)‖2
−1

)

p,(k) = 1
β τ(k)W(k−1)h(k)+

(
β 2 + τ(k)‖h(k)‖2

)
γ(k)e(k)

W(k) = W(k−1)+ 1
β p,(k) ·h(k)H

end for

Table 2API and FAPI Algorithms

Initialization : W(0)← IM×N , Z(0)← IN×N

for k = 1 to Nbr snapshotdo
PAST main section(see Algorithm 1)
API main section
Θ(k) = 1√

IN×N+‖e(k)‖2g(k)g(k)H

Z(k) = 1
β · (I −g(k) ·y(k)H )Z(k−1)Θ(k)−H

W(k) =
(
W(k−1)+e(k)g(k)H

)
Θ(k)

FAPI main section
ε
2(k) = ‖x(k)‖2−‖y(k)‖2

τ(k) =
ε

2(k)

1+ε2(k)‖g(k)‖2+
√

1+ε2(k)‖g(k)‖2

η(k) = 1− τ(k)‖g(k)‖2

y
′
(k) = η(k)y(k)+ τ(k)g(k)

h
′
(k) = Z(k−1)Hy

′
(k)

ǫ(k) = τ(k)
η(k) (Z(k−1)g(k)− (h

′
(k)g(k))g(k))

Z(k) = 1
β (Z(k−1)−g(k)h

′
(k)H + ǫ(k)g(k)H )

e
′
(k) = η(k)x(k)−W(t−1)y

′
(k)

W(k) = W(k−1)+e
′
(k) ·g(k)H

end for

5. CONCLUSION AND FUTURE WORK

The non sidelooking configuration involves different kindsof prob-
lem including the range dependency. In this paper, we showedthat
we can mitigate this problem by using range recursive algorithms
which can estimate recursively the weights of the clutter rejection
filter and thus track this non stationarity through the medium of the
forgetting factor. We have presented the good performance of a
number of adaptive recursive subspace-based algorithms oflinear
complexity under simulation of a case of a very severe non sta-
tionarity and in comparison with the SMI algorithm and with the
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Table 3NIC Algorithm

Initialization : W(0)← IM×N , δ small positive integer ,
Z(0)← δ · IN×N , W̃(0)← nul matrix

for k = 1 to Nbr snapshotdo
y(k) = W(k−1)H ·x(k)
h(k) = Z(k−1) ·y(k)

g(k) =
h(k)

β+yH (k)·h(k)

Z(k) = 1
β · (Z(k−1)−g(k) ·y(k)H ·Z(k−1))

e(k) = x(k)−W̃(k−1)H ·y(k)
W̃(k) = W̃(k−1)+e(k) ·g(k)H

W(k) = (1−η) ·W(k−1)+η ·W̃(k)
end for

optimal filter. Furthermore, they present a very low computational
complexity. That’s why these algorithms can be considered as an
economical approach in comparison with the other techniques. Our
purpose was here to test the capability and the limits of these range
recursive algorithms to track this form of non stationaritywithout
the help of compensation method. The future investigationswill
be the use of a variable forgetting factor which can be adapted at
each iteration to the non stationarity degree and the use of compen-
sation methods to further outperforming these results. We are also
studying a comparison of the proposed algorithms with compensa-
tion methods as Lapierre algorithms [2] and with other methods as
the linear prediction of the inverse clutter covariance matrix [10].
The bistatic configuration is also under consideration.
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Figure 1: Geometry of the monostatic non sidelooking configura-
tion
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Figure 2: Examples of clutter ridges. No velocity misalignment (a)
; velocity misalignment of 10o (b), velocity misalignment of 90o (c)
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Figure 3: Slice of SINR loss at spatial frequency= 0o with 240
secondary range cells andRc = 9000m (Monte Carlo simulations
over 20 simulations)
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Figure 4: Slice of SINR loss at spatial frequency= 0o with 240
secondary range cells andRc = 15000m (Monte Carlo simulations
over 20 simulations)
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Figure 5: Slice of SINR loss at spatial frequency= 0o with 480
secondary range cells andRc = 9000m (Monte Carlo simulations
over 20 simulations)
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Figure 6: Slice of SINR loss at spatial frequency= 0o with 480
secondary range cells andRc = 15000m (Monte Carlo simulations
over 20 simulations)
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