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ABSTRACT 

 
Analyzing the characteristics of the LR-based VAD, it was found 
that the delay associated with the decision directed (DD) a priori 
SNR estimator can lead to detection errors at speech onsets and 
offsets. In this paper the properties of a non-causal estimator, used 
before in a speech enhancement system, are investigated. It is 
shown that the application of the non-causal estimator improves 
the robustness of the VAD in noisy environments, specifically at 
low SNRs. In addition, the associated noise estimation procedure 
has been further improved by the application of a dynamic time 
varying smoothing factor. Objective tests conducted based on 
speech/non-speech discrimination show that the proposed VAD 
outperforms standard VAD algorithms, including ETSI-VADNest, 
AMR1, AMR2, and also the statistical VADs based on smoothed 
LR and multiple observation LR, specifically at low SNRs, at the 
cost of some delay. 
 

Index Terms— Voice Activity Detection (VAD), likelihood 
ratio, non-causal estimation. 
 

1. INTRODUCTION 
 
Voice activity detection, being a crucial part of many speech 
processing applications such as speech enhancement [1], variable 
rate speech coding [2] and speech recognition [1,9], has been the 
field of study for many researchers. Traditional VADs usually use 
a combination of different speech features such as short term 
energy, zero crossing rate, periodicity measures [3], etc. as their 
decision parameter. While older approaches toward speech 
detection were based on heuristics, a trend toward robust statistical 
algorithms has been established in the past few years [4-9]. 
Recently, successful attempts have been made in developing voice 
activity detectors based on the likelihood ratio (LR) test, 
employing different statistical models for the speech and noise [5-
9]. In [5] Sohn and Sung developed a LR based VAD assuming 
speech and noise as Gaussian random processes. An improved 
version of the VAD was introduced in [6], employing the decision 
directed (DD) estimate of the a priori SNR instead of the ML 
estimate used  in [5]. A novel hangover scheme based on the 
hidden Markov model (HMM) was used to improve speech 
detection rate at weak speech tails. However, the VAD’s error rate 
at speech onsets and offsets was rather high. Analyzing the LR as a 
function of its variables, the cause was found to be the delay term 
in the DD estimator [7]. To alleviate the problem they suggested 
the smoothing of the LR. On the other hand, the application of 
future signal measurements has been found to be beneficial in 

improving the performance of speech processing systems and to 
meet the high level of performance required by modern speech 
processing systems [9-11]. Adopting this approach, a non-causal 
(NC) a priori SNR estimator was developed for the application of 
speech enhancement in [11]. In this paper the properties of this NC 
estimator and its application to voice activity detection is 
investigated. Also the noise estimator used in [6,7] has been 
further improved by the application of a dynamic time varying 
smoothing factor. Finally the performance of the proposed VAD is 
evaluated and compared to standard VADs (ETSI-VADNest, 
AMR1&2) and the smoothed likelihood ratio (SLR) and multiple 
observation likelihood ratio (MO-LR) VADs presented in [6,7] by 
speech/non-speech discrimination analysis and ROC curves. 
 
2. DESCRIPTION OF THE NON-CAUSAL A PRIORI 

SNR ESTIMATOR 
 
To avoid the delay associated with the DD a priori SNR estimator 
that results in the attenuation of speech onsets by the speech 
enhancement algorithm, Cohen proposed a non-causal (NC) 
estimator that takes advantage of future spectral measurements 
[11]. Adopting the Gaussian model for speech and noise with 
respective variances of Xλ  and Nλ , the proposed NC estimator 
used the optimal MMSE spectral power (SP) estimate of the signal, 
derived by Wolfe & Godsill [14], for estimating the a priori SNR. 
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where NX λλξ =  and NY λγ 2=  are the a priori and a 
posteriori SNRs respectively. It was proved that due to the 
statistical independence of observations assumed in the model, 
employing future spectral measurements into the system leaves the 
speech enhancement algorithm intact and only the a priori SNR 
estimator should be modified accordingly. It should be noted that 
to compute the gain function (GSP), an estimate of the a priori 
SNR ( ξ ′ ) should be at hand already. To obtain a feasible 
estimator, this parameter was replaced by a weighted sum of three 
terms. 1) The enhanced spectral amplitude of the previous frame 
divided by the noise variance (similar to the DD estimator). 2) The 
NC estimate obtained for the a priori SNR in the previous frame 
( ( )1ˆ −tNCξ ). 3) A smoothed version of the a posteriori SNR both 
in time and frequency (ξ ′′ ). So we have: 
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where k indicates the spectral bin index, t is the time frame index 
and ]25.05.025.0[=b  is the normalized window used for 
local averaging. The third factor, ξ ′′ , is computed as follows: 
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where ( ) ( ){ }0,,0,, ≠≤≤≤≤−=Γ jiLtiji ωω  designates the time-
frequency indices of the measurement. To ensure the positiveness 
of ξ ′′  and reduce the musical noise phenomenon, the parameters 
ξ ′′  and ξ ′  were constrained to be larger than zero and minξ , 
respectively, as suggested by Cappe [13]. Compared to the DD 
estimator, the second term used in (3) is new and yields smoother 
estimates due to its recursive nature. The third term, ξ ′′ , replaces 
the ML estimate of the a priori SNR (i.e. 1−= γξ ) used in the 
DD estimator [12]. Since this factor is computed over the future 
spectral values we predict a faster response to spectral variations 
for the NC estimator than the DD estimator. 
 

3. NON-CAUSAL VOICE ACTIVITY DETECTION 
 
The drawbacks considered with traditional, heuristically motivated 
VADs have caused a trend toward developing robust statistical 
algorithms by researchers in the past few years. Recently, 
successful attempts have been made in developing voice activity 
detectors based on the likelihood ratio test, employing Gaussian 
statistical models for the speech and noise [5-7]. Forming the 
likelihood ratio for the kth frequency bin under the assumed 
model, we have [6]: 
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The unknown parameters of the LR are the noise variance, Nλ , 
and the a priori SNR, ξ, where the first is obtained through the 
noise estimation procedure (described in section 4) and the latter 
was computed using the DD a priori SNR estimator. The final 
VAD decision parameter will be the geometrical mean of the LRs 
over all frequency bins. Analyzing the LR as a function of its 
variables, ξ  and γ, it can be seen that the LR reaches its maximum 
at ( maxmax ,ξγ ) while it becomes minimum at ( maxmin ,ξγ ), and 
not ( minmin ,ξγ ). Considering the delay of the DD estimator, we 
may expect misdetections at speech onsets and offsets. While at 
speech onsets γ increases, ξ can remain low thus limiting the rise of 
the LR (this may cause more problems at low SNRs where the 
increase in γ may not be enough to raise the LR above the decision 
threshold). On the other hand, at low energy speech tails the 
instantaneous SNR, γ, declines but ξ may remain high, thus, the 
LR may fall to a value near to its minimum. The solutions 
presented so far consist of an HMM-based hangover scheme [6] 
and smoothing the LR [7]. In fact Cho et al. considered designing 
an adaptive α for the application in the DD estimator. However, 
their efforts did not yield a generalized adaptive rule. Thus 
smoothing the LR was considered as an alternative [7] to slow the 
decay of the VAD’s decision parameter and avoid misdetections at  

 
Figure 1: a) SNRs in successive frames for the sample signal 
corrupted with pink noise at 0dB SNR. b) The LR computed using 
the NC and DD a priori SNR estimators. 
 

 
Figure 2: Enlarged views of the a priori SNR and LR at the frames 
containing noise only (a & b) and speech offset (c & d). 

speech offsets. To better understand the properties of the DD and 
NC estimators and their impact on the computed LR a sample 
signal containing a sinusoidal component was chosen and pink 
noise was added to it artificially at 0dB SNR. The signal contains 
only noise in the first 50 and last 40 frames while a sinusoidal 
component, 60 frames long, comes in the middle. The estimates 
obtained for the a priori SNR using the DD and NC estimators and 
the corresponding LRs are demonstrated in figures 1(a) and (b), 
respectively. Comparing the figures, the NC estimator has been 
helpful in improving the VAD based on the LR in the following 
ways: 
1) Smoother results are obtained by the NC estimator for ξ during 
noise-only periods causing not only less musical noise in the 
enhanced signal but also less fluctuations in the calculated LR, 
thus, causing less false alarms. Figures 2(a) & (b) show an 
enlarged view of the ξ estimates and their corresponding LRs 
during the first 45 frames. It is clear that the NC-LR fluctuates less 
than the DD-LR in noise only frames. 
2) At speech onsets where the DD estimator can not respond too 
fast, the estimate obtained through the NC estimator tracks γ 
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quickly and consequently the LR increases faster avoiding speech 
misdetections, Figures 1(a) & (b). 
3) At low energy speech tails the NC estimates for ξ track γ 
consistently, avoiding the delay associated with the DD estimator. 
Thus the fall in LR is slightly less than what can be seen with the 
DD estimator. This is better seen in the enlarged view of frame 
numbers 107 to 114, shown in Figures 2(c) & (d). 
4) During speech active frames the NC estimates of ξ track γ 
without the one frame delay associated with the DD estimator, 
resulting in stronger peaks in the computed LR since, γ and ξ rise 
almost simultaneously contributing to a strong maximum in the 
computed LR.  
Still, smoothing the computed NC-LR is useful, since it reduces 
the variance of the VAD’s decision parameter, improving its 
performance in noisy environments. It should be noted that the 
application of future spectral measurements imposes a delay on the 
VAD 's decision. To determine the optimal value for the number of 
subsequent frames used in the NC estimator, the VAD’s accuracy 
was evaluated as a function of the delay term (L) on a subset of the 
evaluation database. As it can be seen in Figure 3, increasing the 
delay term to 4 frames significantly improves the VAD’s 
performance. Increasing the delay over this value does not result in 
further improvements. In [9] a VAD called MO-LR was developed 
using more observations for forming the LR test. The concept 
leads to a moving average like smoothing of the LR values over a 
window of 2w+1 observations which can be implemented 
efficiently. This algorithm has also a delay. We will show that the 
proposed NC-LR based VAD outperforms the SLR, MO-LR and 
the standard VAD methods. 
 
 

4. IMPROVED NOISE ESTIMATION 
 
A sensitive part of the VAD is its noise estimation algorithm. To 
estimate the time varying noise statistics a novel soft-decision 
technique was developed in [5]. The optimal estimate of the 
variance of the background noise, Nλ , was obtained in an MMSE 
sense as  
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where ( )YHP 0  is the speech absence probability. This can be 
calculated by the Bayes rule as 
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where ( )0HP  is the a priori speech absence probability, ( )1HP  is 
its complement and Λ is the VAD soft decision parameter. The 
estimation of ( )0HP  has attracted much attention more recently 
[7,15]. Here it is estimated in an adaptive manner as given in [7]. 
Our observations of the noise estimator showed that although the 
noise estimator was fast in following the abrupt changes of the 
noise signal, it included parts of the speech energy in our estimate 
of the noise during speech periods. This was more apparent during 
speech onsets and weak speech tails where, as mentioned earlier, 
the LR may take small values, thus ( )YHP 0  may increase causing 
a portion of the speech energy (Y2) be absorbed in our estimate of 
noise variance according to (6). This artifact results in 

 
misdetection of such frames, but moreover, it causes more 
attenuation of the signal by the speech enhancement algorithm [12] 
due to the increase of the noise level (so ξ is further reduced). 
Thus, the VAD misses to detect the following speech frames and 
consequently the noise level further increases and causes the VAD 
to fail to detect even some speech with rather high energy. 
Although not directly mentioned, to alleviate this problem, Cho et 
al. used the smoothed likelihood ratio (SLR) instead of the LR 
itself in (7) and further smoothed the value obtained from (6) with 
a constant smoothing factor [7]. While the proposed solution 
works well in rather high SNR conditions (+5dB and up, that is the 
same SNR range used in [7] for their analysis), as the SNR 
decreases to 0dB and below, the same disturbing artifact is faced. 
Since γ has an exponential distribution with a mean of one [12], we 
may consider any deviation of γ  from its expected value as 
speech or a highly non-stationary noise. In order to overcome the 
problem, we propose the application of a dynamic time varying 
smoothing parameter in the recursive averaging as follows 

( ) ( ) ( ) { }YEtt NdNdN λαλαλ −+−= 11ˆˆ   (8) 

105.092.0 −+= γαd    (9) 

Where γ  is the smoothed version of γ, with a constant factor of 
0.95 and dα  is limited to 0.98. Through speech active frames 

1−γ  may rise, thus increasing the dynamic smoothing parameter 
avoiding the absorption of speech energy into our estimate of 
noise. In addition, the proposed NC-LR takes larger values in 
speech onsets and offsets than the LR, alleviating the 
aforementioned problem in such regions according to (6,7). Our 
investigation of the VAD performance showed that the application 
of the smoothed NC-LR and the dynamic smoothing parameter, 
compared to a constant smoothing parameter [7] leads to 
significant improvements in terms of speech detection rate, 
specifically at low SNRs. 
 

5. PERFORMANCE EVALUATION 
 

The proposed VAD was extensively evaluated by means of 
objective tests based on speech detection rate (SDR) and non-
speech detection rate (NDR) and the results were compared to 
standard VADs including AMR1, AMR2 [2] and ETSI-VADNest 
[1] as well as the smoothed and multiple observation likelihood 
ratio-based VADs presented in [7] and [9], respectively. It should 
be mentioned that the proposed modifications made to the VAD 
were separately evaluated. Speech data of about 440 sec duration 
from two female and two male speakers have been taken from the 
persian AKHBAR database. The database is collected at the 
Speech lab, Electrical Engineering Department, Amirkabir 
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University of Technology from the local radio news broadcasts. A 
set of four noises were chosen from the NATO RSG-10 database 
[17] (white, pink, car and f16) and artificially added to the speech 
at SNRs of 15, 10, 5, 0 and -5 dB. The clean data was manually 
labeled as speech or silence and used as a reference for 
discrimination analysis. Finally the above mentioned VADs were 
applied to the noisy data. SDR/NDR is computed by the division 
of the true number of speech/noise detected frames to the total 
number of frames labeled as speech/noise manually. The results 
for the working point of the VADs are presented in Table1. As it 
can be seen the multiple observation likelihood ratio (MO-LR) 
based VAD (where the window length was set to 17 frames, thus, 
imposing an eight frame delay on the VAD’s decision) has 
improved the detection rates over the smoothed likelihood ratio 
(SLR) based VAD. Yet the non-causal (NC) approach outperforms 
both of them. This is specifically noticeable in environments with 
non-stationary noise. Another test that is commonly conducted to 
reveal the tradeoff between speech detection (Pd=SDR/100) and 
false-alarm (Pf=1-NDR/100) probabilities is the receiver operating 
characteristic (ROC) curves. The ROC curves, for white, pink and 
f16 noise at 0dB, are shown in figure 4 where each of the curves 
are found by inspecting the VAD's performance (Pd & Pf) as its 
threshold changes. The multiple observations LR based VAD 
which uses more observations for making the decision as 
suggested in [9] shows improved performance over the SLR based 
VAD. Further improvements can be achieved by applying the 
proposed changes to the noise estimator used in [7]. Meanwhile, 
the NC-LR, having a delay of 4 frames, is still superior to all, 
including the standard VADs. Similar results hold over the rest of 
the SNR range and noise types. 
 

6. CONCLUSION 
 
Voice activity detection has become a crucial part of many speech 
processing applications. Analyzing the characteristics of the LR-
based VAD, it was found that the delay associated with the DD a 
priori SNR estimator can lead to detection errors at speech onsets 
and offsets. Cho et al. smoothed the LR to alleviate the detection 
errors [7]. While the proposed solution works well in rather high 
SNR conditions (+5dB and up, that is the same SNR range used in 
[7] for their analysis), as the SNR decreases to 0dB and below the 
SLR-based VAD makes numerous detection errors. In this paper 
the properties of a NC a priori SNR estimator, used before in a 
speech enhancement system, is studied. It is shown that the 
application of the NC estimator improves the robustness of the 
VAD in noisy environments, specifically at low SNRs. Since the 
proposed solution takes advantage of subsequent spectral 
measurements, the algorithm has a delay of a few frames. 
Moreover, the soft noise estimation technique was investigated and 
further improved by the application of a dynamic time varying 
smoothing parameter. This prevents our noise estimate to capture 
speech energy during weak parts of speech that occurs frequently 
at low SNRs. It has been found that the proposed VAD 
outperforms standard VAD algorithms, including ETSI-VADNest, 
AMR1, AMR2, and also the statistical VADs based on SLR and 
MO-LR [9]. 
Due to the simultaneous high speech/non-speech hit rates of the 
proposed VAD, we expect it to be a very good choice for frame 
dropping in a typical speech recognition system which is not 
sensitive to the VAD's delay. However this needs to be further 
verified. 

Figure 4. Roc curves for VADs at 0dB SNR: (a) white noise, (b) 
pink noise, (c) F16 noise. 

 
7. REFERENCES 

 
[1] ETSI, “Speech Processing, transmission and quality aspects 
(STQ); Distributed speech recognition; Advanced front-end feature 
extraction algorithm; Compression algorithms; Back-end speech 
reconstruction algorithm,” ETSI ES 202 212 v1.1.1, Nov. 2003. 
[2] ETSI, “Voice activity detector (VAD) for Adaptive Multi-Rate 
(AMR) speech traffic channels,” ETSI EN 301 708 
Recommendation, 1999. 
[3] S.G. Tanyer and H. Özer, “Voice activity detection in 
nonstationary noise,” IEEE Trans. Speech Audio Processing, vol. 
8, pp. 478–482, July 2000. 
[4] B. Ahmed and W. Holmes, "A Voice Activity Detector Using 
The Chi-Square Test" in Proc. ICASSP, vol. 2, pp. 737–740, 2001. 
[5] J. Sohn and W. Sung, “A voice activity detector employing soft 
decision based noise spectrum adaptation,” in Proc. ICASSP, 1998, 
pp. 365–368. 
[6] J. Sohn, N.S. Kim, and W. Sung, “A statistical model-based 
voice activity detection,” IEEE Signal Processing Letters, vol. 6, 
no. 1, pp. 1–3, Jan. 1999. 
[7] Y.D. Cho, K. Al-Naimi, and A. Kondoz, “Improved voice 
activity detection based on a smoothed statistical likelihood ratio,” 
in Proc. ICASSP, vol. 2, pp. 737–740, 2001. 
[8] S. Gazor and W. Zhang, "A Soft Voice Activity Detector Based 
on a Laplacian–Gaussian Model," IEEE Trans. Speech and Audio 
Processing, vol. 11, no. 5, Sep. 2003. 
[9] J. Ramírez, J.C. Segura, C. Benítez, A. Torre, and A.J. Rubio, 
“Statistical Voice Activity Detection using a Multiple Observation 
Likelihood Ratio Test,” IEEE Signal Processing Letters, vol. 12, 
no. 10, pp. 689–692, 2005. 
[10] ____, “Efficient voice activity detection algorithms using 
long-term speech information”, Speech Communication, vol. 42, 
pp. 271-287, 2004. 

©2007 EURASIP 2068

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



[11] I. Cohen, “Speech enhancement using a noncausal A Priori 
SNR estimator,” IEEE Signal Process. Letters, vol. 11, no. 9, pp. 
725–728, Sep. 2004. 
[12] Y. Ephraim and D. Malah, “Speech enhancement using a 
minimum mean-square error short-time spectral amplitude 
estimator,” IEEE Trans. on Acoustics, Speech and Signal 
Processing, vol. ASSP-32, pp. 1109–1121, 1984. 
[13] O. Cappé, “Elimination of the musical noise phenomenon 
with the Ephraim and Malah noise suppressor,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. 2, pp. 345–349, Apr. 
1994. 

[14] P.J. Wolfe and S.J. Godsill, “Simple alternatives to the 
Ephraim and Malah suppression rule for speech enhancement,” in 
Proc. 11th IEEE Workshop Statist. Signal Processing, Singapore, 
pp. 496–499, Aug. 6–8, 2001. 
[15] I. Cohen and B. Berdugo, “Speech enhancement for 
nonstationary noise environments,” Signal Process., vol. 81, no. 
11, pp. 2403–2418, Nov. 2001. 
[16] ETSI “Digital cellular telecommunications system (Phase 2+); 
Universal Mobile Telecommunication Systems (UMTS); AMR 
speech codec; C-source code,” ETSI TS 126 073 V6.0.0, 2004. 
[17] Available from http://spib.rice.edu/spib/select_noise.html. 
 

 
 

 

Environment VADNest AMR1 AMR2 SLR MO-LR NC-LR 

Noise SNR SDR NDR SDR NDR SDR NDR SDR NDR SDR NDR SDR NDR

15 91.88 99.82 91.95 68.47 97.70 77.55 98.50 99.14 92.93 99.53 99.02 97.95

10 90.57 99.91 92.21 68.70 97.55 76.69 96.94 99.62 92.46 99.56 98.27 98.41

5 86.73 99.94 90.75 67.28 95.85 77.60 92.79 99.83 91.56 99.89 96.59 98.77

0 54.95 100.00 87.88 63.80 83.05 79.55 79.23 100.00 88.54 99.95 92.78 98.98

W
hi

te
 

-5 11.06 100.00 81.26 54.98 33.92 91.25 50.19 100.00 72.05 100.00 79.26 99.06

15 93.41 88.91 92.59 70.75 97.65 77.15 97.30 99.54 92.83 99.56 98.80 98.19

10 92.53 88.94 90.99 70.07 97.44 77.49 93.52 99.84 91.76 99.59 97.24 98.66

5 89.92 89.01 87.08 69.37 93.88 78.65 83.43 99.97 89.72 99.96 94.17 98.98

0 71.03 89.11 71.30 70.22 62.83 84.97 62.99 100.00 78.90 100.00 84.88 99.13

Pi
nk

 

-5 26.94 89.06 57.33 67.24 18.03 96.66 33.98 100.00 45.90 100.00 56.96 99.08

15 99.95 6.36 99.53 76.91 99.98 75.92 99.9870 84.5510 100.00 92.06 99.99 84.48

10 99.94 6.28 99.76 76.10 99.93 75.29 99.95 85.33 100.00 92.15 99.97 84.68

5 99.94 6.26 99.61 73.45 99.87 75.43 99.74 86.52 99.83 92.38 99.91 85.44

0 99.95 6.26 98.53 71.92 99.34 76.25 99.14 87.63 99.16 92.88 99.81 86.64V
eh

ic
le

 

-5 99.95 6.26 96.75 71.54 98.53 77.70 97.66 88.52 97.02 93.63 99.37 87.74

15 93.14 94.26 94.06 70.30 97.89 76.42 97.73 94.24 97.08 86.97 99.43 73.46

10 91.90 94.43 91.87 70.06 97.01 76.97 94.16 94.42 94.88 90.40 98.61 77.15

5 88.76 94.50 86.81 69.63 90.54 79.58 85.88 94.33 92.28 92.46 96.64 80.17

0 67.76 94.58 70.63 69.79 53.16 83.39 68.33 94.18 84.97 92.53 91.11 80.19

F1
6 

-5 24.97 94.54 65.28 55.06 17.16 94.66 46.33 93.99 62.30 92.16 75.40 79.54

Table 1. Detection rates for the proposed and benchmark VADs for various environmental conditions 
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