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ABSTRACT function (RTF). In particular we will investigate the appli

Identification of glottal closure instants (GCls) is impor- cation of two different approaches to multimicrophone pro-
tant in speech applications which benefit from larynx-cessing in the context of GCI identification using DYPSA:
synchronous processing. In modern telecommunication agk) preprocessing using a delay-and-sum beamformer (DSB),
plications, speech signals are often obtained inside officand (ii) implementing an additional penalty function in the
rooms, with one or more microphones placed at a distancéynamic programming (DP) element of DYPSA.
from the talker. Such speech signals are affected by reverbe ~ The remainder of this paper is organized as follows. Sec-
ation due to the reflections from surrounding walls and ob-ion[ presents the effects of reverberation on speech and di
jects, which distort the observed speech signals and degradusses the consequences on GCl identification. Sddtion 3 re-
the performance of speech processing algorithms. views the DYPSA algorithm. The extension of DYPSA to

This paper presents a study of the identifiability of GClsthe multimicrophone case is presented in Sedflon 4 and sup-
from reverberant speech using the Dynamic Programmingporting simulation results are provided in Secfidn 5. Hinal
Projected Phase-Slope Algorithm (DYPSA) and new extergonclusions are drawn from this work in Sectidn 6.
sions to the multimicrophone case. Two multichannel algo-
rithms are proposed and evaluated; in both cases, consid- 2. REVERBERATION EFFECTS ON SPEECH
erable performance gains over a single microphone are ob-

tained, with detection rates improved by up to 29% in highlycOnsider a speech sigrsh) produced in a reverberantroom

reverberant environments and observed by aM-element microphone array positioned
' at a distance from the source. Timth microphone observa-
tion is
1. INTRODUCTION
¥m(n) =hgs(n), m=12....M (1)

Identification of glottal closure instants (GCIs) in voiced
speech is important for many speech processing applicaherehm = [hmo hm1 ... hmi—1]" is theL-tap impulse re-
tions such as larynx-synchronous processing in speech syBponse of the acoustic channel between the source tatthe
thesis[1], prosodic speech modificatiéh [2] and speech-derdnicrophones(n) = [s(n) s(n—1) ... s(n—L+1)]" is vec-
verberation[[B]. The GCls can be identified accurately if artor of input samples at timeand" is the transpose operator.
EGG signall[4[b] is available. However, this is not usuallyThe problem is to identify the GCls &(n), using the obser-
the case in practice and, therefore, algorithms for autiematvationsxm(n).
GCl identification from the speech signal are preferred. The DYPSA operates on the linear prediction (LP) residual,
Dynamic Programming Projected Phase-Slope Algorithne(n). The LP residual of clean voiced speech is characterized
(DYPSA) was recently proposed [ [6] and was demonstratelly a quasi-periodic pulse train representing the speedh exc
to detect accurately the GCls in anechoic speech recordingstion, and approximately constitutes the instants oftglot

In many modern telecommunication applications, speechlosure[[9]. In general, GCI identification algorithms atyet
signals are obtained in enclosed spaces such as office roorts,locate these peaks] [6], which can prove a difficult task;
with the talker situated at a distance from the microphonethe pulse-train model of the LP residual is over-simplified
In this case, the observed speech signal is distorted by-reveand doesn’tincorporate the noise-like signal componesis b
beration, resulting from sound reflections off the surreundtween the excitation peaks.
ing walls and objects. Reverberation distorts the speeeh si It has been demonstrated for reverberant speech that the
nals [7], acting adversely on many speech processing apeverberation mainly affects the LP residual. Studies en th
plications including speech recognition and hands-frke te effect of reverberation on voiced speech LP residuals [B, 10
phony. Reverberation will, inevitably, degrade the perfor have further shown that the room impulse response results in
mance of GCl identification algorithms so it forms an impor-additional spurious peaks of similar amplitude to the orédi
tant topic of research for the practical applicability oEbu excitation peaks. These erroneous peaks make it difficult to
algorithms in the future. distinguish the true GCls as shown in FHig. 1. However, in

In this paper, we first study the effects of reverberatiommultiple time-aligned observations from a beamformer, the
on the performance of the DYPSA algorithm for a singlepeaks due to GCls are correlated, while those due to rever-
microphone. Next, we propose an extension of DYPSA tderation are not. This observation has motivated the dpvelo
the multimicrophone case. Microphone arrays are known tanent of several speech dereverberation algorithirig [3.]8, 11
be advantageous for sound capture in reverberant enviromhich reduce the effects of reverberation by attenuatiict su
ments [8] due to the spatial diversity of the room transfemuncorrelated components.
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Figure 1: Effects of reverberation on LPC residuals: (lefan speech and clean residual, (right) reverberant kst
reverberant residual.

3. THEDYPSA ALGORITHM e Projected candidate cost;(r), for the candidates from
the phase-slope projection, which often arise from erro-
neous peaks.

Normalised energyce (r), which penalises candidates

The main features of the DYPSA algorithm are now re-
viewed. It consists of three main components: the phase.
slope function, the phase slope projection, and dynamic pro : . '
gra[?nming. These c%mponen['zs :fre Jdefined as fol?/ows. P th"’llt do not correspond to high energy in the speech sig-
Phase-slope functiofiZ] — defined as the average slope hal. . . .
of the unwrapped phase spectrum of the short time Fourier® !d€al phase-slope function deviatian(r), where candi-
transform of the prediction residual. GCI candidates are d@at€s arising from zero-crossings with gradients close to
selected based on the positive-going zero crossings of the Unity are favoured. o .
phase-slope function. Using the characteristics of the prediction residuals re-
Phase-slope projectionintroduced to generate GCI can- sulting from clean and reverberant speech discussed in Sec-
didates when a local minimum is followed by a local maxi- tion[d and the properties of DYPSA presented above, the fol-
mum without crossing a zero. The midpoint between thes®Wwing remarks can be made:
is identified and projected onto the time axis with unit slope (i) The reverberant prediction residual contains many
In this way, GCls whose positive going slope does not cross  peaks due to the room impulse response, whose ampli-
the zero point (those missed by the phase-slope functien) ar tudes are comparable to the desired peaks in the clean
identified. speech residual. Consequently, the phase-slope func-
Dynamic Programming- uses known characteristics of tion and the phase-slope projection are likely to pro-
voiced speech and forms a cost function to select a subset of duce many erroneous candidates.
the GCI candidates which are most likely to correspond to (ii) Peaks of similar amplitude to the true excitation peaks
the true ones. The subset of candidates is selected acgordin ~ from the clean prediction residual are likely to result in

to the minimisation problem defined as wrong candidates if they both occur in the same analy-
sis frame for the short time Fourier transform.
e (iii) A voiced speech segment of weak energy which is pre-
”2{” Zl/\ ca(r), (2) ceded by a high energy component is likely to result
r=

in erroneous candidates due to the smearing effect of
the room impulse response. Such segments occur, for
example, at the end of voiced utterances.
. o It can be seen from the dynamic programming criteria
08 05 04 03 01JT is a vector of weighting fac- . DypPSA is robust to spurious pegks in the prediction
tors with the values takeq here as in [6] antt) = | ogiqual. Thisis an attractive feature for GCI identifioatin
[Ca(r) cp(r) cs(r) cr (r) cs(r)]" is a vector of cost elements reyerherant speech and can be expected to discriminate many
evaluated at theth GCI of the subset. The cost vector ele- of the erroneous candidates due to reverberation. Neverthe
ments are: less, the performance of DYPSA is degraded significantly
e Speech waveform similaritga(r), between neighbour- with increased reverberation, as will be shown by the sim-
ing candidates, where candidates not correlated with thelation results in Sectiofl 5. Due to the spatial diversity of
previous candidate are penalised. the room impulse responsés [7], the adverse effects odtline
e Pitch deviation cp(r), between the current and the pre- above can be reduced by using multiple microphones which
vious two candidates, where candidates with large devias the motivation for the introduction of multichannel pro-
tion are penalised. cessing within DYPSA.

where Q is a subset with GCls of sizeQ| selected
from all GCI candidates,A = [Aa Ap A; AF Ag' =
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4. MULTICHANNEL DYPSA !

This section presents two approaches to multichannel *°[ ]

DYPSA. 0.8} 1

0.71 1

4.1 DYPSA at the output of a beamfor mer
The output of the DSB can be written

0.6 1
051 1

_ 1Mt
x(n) = v zoxm(n— Tm), (3) 0.4t |

0.3f 1

Amplitude

wherety, is a delay to compensate for the time delay of ar-
rival to the different microphones in the array and is assliime
to be knownx{n) is then presented as a single-channel input ~ °1f 1
to the standard DYPSA algorithm. We refer to this approach o ‘

as DSB-DYPSA. 05 0 05

Time (ms)

0.21 1

4.2 Multichannel Candidate Generation and Selection Figure 2: Smoothing Function — a clipped Gaussian for

Multichannel DYPSA (MC-DYPSA) is a novel extension to smoothing the cost component for interchannel correlation
DYPSA which relies on the correlation of GCI candidates

across multiple channels. As described in Sedflon 3, single _ _ _ _ o
channel DYPSA can be split into three stages: (i) Candidatavhereu(n) is a zero mean unit variance Gaussian multiplied
GCls are determined by the zero crossings of the phase slopi a gaink. It is convolved withg(n) to form a new function
function of the LPC residual, (i) Points of inflexion which d(n),

dlo not cro;g fzerﬁ are pré)jdected <()n;[o the time axis with unit 1 M-1R-1

slope to add further candidates, (iii) Dynamic Programming —ar _ - _

(DP) selects the most likely GCls based upon a defined cost d(m) =g(n) «Y(n) M 2 ) on=nem)«Y(n)  (7)
function. MC-DYPSA performs stages (i) and (ii) on each ) ) ] ]
channel independently. An additional component is incorpoWherex denotes linear convolution. The functid(n) is not
rated into the DP cost function, which penalizes candidateounded in the range€9d(n) < 1 but may exceed 1 depend-
that are not well correlated across time-aligned channels. INg upon the proximity and height of the samplesgof).

We denote channeh= {0,1,...,M — 1} containingN ~ Samples for whictd(n) exceed 1 are all likely candidates.
samples indexed = {0,1,...,N — 1}. Each channel con- We next define the mterjchannel cost functiony), such
tainsRyy GCI candidates, enumerated by: {0,1,...,Rn— f[hat values ofi(n) exceeding 1 are mapped to -0.5 and those
1}, located at samples, . Unique GCI candidates (those in the range 6< d(n) < 1 are mapped t0.6 > d(n) > —0.5.
occurring in at least one channel at the same time) are de o) {O.Sd(nr) d(n) <1

m=0r=

fined asny = {n;oUnN,1U...UN; m—1}, SO tha, is the union (8)
of the unique GCI candidate sets from all channels. —-05 d(n)>1

Let gm(n) be a train of impulses at times correspondingy ;e that this cost function is now a function o&nd not
to the locations of GCI candidates for chanmekuch that n for compatibility with the DYPSA DP. This is a linear

1 n=n.mvr mapping ford(n) < 1, but it is possible a nonlinear map-
’ (4)  ping may yield better results by penalising low inter-chann
correlation and encouraging high inter-channel correetid

The meang(n), of gm(n) across all channels is a function & 9reater degree.

indicating the number of occurrences of GCI candidates for _ tWas found thatthe interchannel correlation cost weight-
a given sample, Ing, A, gave best results when set to 0.4.

gm(n) = {

0 otherwise

1 M=1Rm-1 5. RESULTS

g(n) = M rgo rZo (N = nem) ) The valu€eTgg is defined as the time for a Room Impulse Re-
sponse (RIR) to decay to -60dB of its initial value. A room
whered(n—n;m) is a unitimpulse function with origin atthe measuring 3x4x5 m anto ranging{100, 150,...,50pms
candidate in channem. Small timing errors can occur inthe was simulated using the source-image methoH [13], contain-
GCI candidates because of poor channel alignment, phasie#ég an array of eight microphones, spaced 50 mm apart,
slope projection errors and sampling noise (at low samplinglaced on a circular arc 2.5 m from the source so that each
frequencies). Therefore a spreading function is applied tehannel contained a 2.5 m propagation delay and no inter-
g(n) so that GCI candidates in close proximity incur a lowerchannel delay (Figld3). Good signal alignment is impor-
cost than those spread further apart. A clipped Gaussian wéant and generally requires subsample delays; placing mi-
found to be a suitable spreading function, as shown inFig. Zrophones on a circular arc centered at the source alleviate

denoted byy(n), the problem for the purpose of this study. The APLAWD
database [14] contains EGG and audio recordings of ten rep-
Yin) = ku(n) 0< lku(n)[<1 ©) etitions of five phonetically-balanced English sentenpes s
1 lku(n)| > 1. ken by five male and five female talkers, sampled at 20 kHz.
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Figure 3: Source and Microphone arrangement. The micro- - )

phone array is 2.5 m from the source on a circular arc térigure 4: Identified GCls superimposed onto a clean speech
prevent interchannel delay, removing the necessity foe timsignal for a) DYPSA on clean speech. b) DYPSA on re-

alignment. The array was placed at a slight angle relative tyerberant speech. c) DSB-DYPSA on reverberant speech.
the walls to reduce strong initial reflections. d) MC-DYPSA on reverberant speech. Reference GClIs ob-

tained with HQTx are represented by solid vertical lines and
estimated GCls are lines ending in a circle.

The EGG signals were analysed with HQTx1[15] to pro-

vide reference GCls. The 19-sample propagation delay from

talker to microphone was removed to align the reference andYPSA. The results are shown in Fig. 5, Hij). 6 and Té&ble 1.

estimated GCls. In all cases, the greatest degradation in detection rate oc-
As defined in[[6] Detection rateis the percentage of all curs in the lower increments Gk and tails off gently with

reference GCI periods for which exactly one GCI is esti-high reverberation. Single-channel DYPSA shows the worst

mated. Accuracyis the standard deviation of the error be- degradation, dropping by 8% between clean &e100 ms

tween estimated and reference GCls, when exactly one GGihd 31% afl5o=500 ms. Multichannel achieves the best with

is estimated in a reference GCI periogalse alarm rateis  a 12% drop aflgo=500 ms. Miss and false alarm rates also

the percentage of all reference GCI periods for which morghow significant improvement.

than one GCl is estimated aiiss rateis the percentage of Like detection rate, the greatest degradation in accu-
all reference GCI periods for which no GCls were estlmatedIracy occurs in the first few increments @, and tails off

) with higher reverberation. MC-DYPSA has a higher hit rate

5.1 Experiment 1 so more candidates are included in the calculation of ac-
A speech file from the APLAWD database was analysed witteuracy, causing MC-DYPSA to appear to degrade further
DYPSA. The sample was then convolved with channel than DYPSA and DSB-DYPSA with higleo. Note that hit
of the microphone array in th&=500 ms case then anal- rate and accuracy from clean DYPSA differ slightly to those
ysed with DYPSA, DSB-DYPSA and MC-DYPSA. The re- given in [€] because the reference GCls were derived from a
sults depicted in Fig4 show eight reference GCls derivedtewer version of HQTx.
from the associated EGG signal with HQTx as solid verti-
cal lines and estimated GCls as short lines terminating in a
circle, against the clean speech waveform. DYPSA correctly 6. CONCLUSIONS
e e o oy e T OYPSA agortmis arobust method or Gl extacon

: ' m voiced speech with low levels of reverberation. How-
icr;%?g(\e/e”r]ntehrﬁ wx(ﬁr?‘%ri';tuﬁjsues' g%??fd{nggcségf '?‘Ssgig&%)er, recording environments such as offices often cause sig

. : ificant sound reflection, resulting in reverberation andth
nificantly lower than the clean case. MC-DYPSA achieves" o ! . o .
identifithtion on a par with clean DYPSA. This experimentIng the applicability of DYPSA in these situations. A micro-

is somewhat idealized which merely demonstrates commo‘i’uhonf‘.e a”?y and DSB#sed asa _prep::ocessor t?j DYPSA can
errors made by DYPSA and DSB-DYPSA with reverberant'dn!ficantly improve the estimation of GCIs and may pro-
speech. MC-DYPSA operating on reverberant speech W”!lde acceptable results in environments with moderatddeve

. . f reverberation. Multichannel DYPSA is an extension to
not always identify GCls as well as DYPSA on clean SpeEChDYPSA which uses the correlation of GCI candidates from

each microphone in an array to provide highly robust GCI
52 Experiment 2 estimation. Though MC-DYPSA contains many parameters

' which require optimization, preliminary results preserite
The APLAWD database was convolved with each RIR inthis paper suggest that the adopted approach yields vedy goo
turn and analysed with DYPSA, DSB-DYPSA and MC- GCI estimation in highly reverberant environments.
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Figure 5: Detection rate vs. reverberation time for DYPSA
on clean speech, DYPSA on reverberant speech, DSB-
DYPSA on reverberant speech and MC-DYPSA on reverber-
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Table 1: Performance comparison for DYPSA algorithms orf13l

the APLAWD database.

ID Miss FA ID

Rate Rate Rate Accg

(%) (%) (%)  (ms)
Clean DYPSA 95.1 23 2.6 0.80
0.1s DYPSA 871 4.1 8.8 0.92
0.1s DSB-DYPSA| 91,5 3.3 53 0.86
0.1s MC-DYPSA | 935 25 4.0 0.89
0.5s DYPSA 641 7.4 285 1.36
0.5s DSB-DYPSA| 715 6.6 21.8 1.27
0.5s MC-DYPSA | 826 4.1 13.3 1.46
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