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ABSTRACT

Decimating a uniformly sampled signal a factor D involves
low-pass anti-alias filtering with normalized cut-off fre-
quency1/D followed by picking out every Dth sample. Al-
ternatively, decimation can be done in the frequency do-
main using the fast Fourier transform (FFT) algorithm, after
zero-padding the signal and truncating the FFT. We outline
three approaches to decimate non-uniformly sampled sig-
nals, which are all based on interpolation. The interpolation
is done in different domains, and the inter-sample behavior
does not need to be known. The first one interpolates the sig-
nal to a uniformly sampling, after which standard decimation
can be applied. The second one interpolates a continuous-
time convolution integral, that implements the anti-aliasfil-
ter, after which every Dth sample can be picked out. The
third frequency domain approach computes an approximate
Fourier transform, after which truncation and IFFT give the
desired result. Simulations indicate that the second approach
is particularly useful. A thorough analysis is therefore per-
formed for this case, using the assumption that the non-
uniformly distributed sampling instants are generated by a
stochastic process.

1. INTRODUCTION

Downsampling is here considered for a non-uniformly sam-
pled signal. Non-uniform sampling appears in many applica-
tions, while the cause for non-linear sampling can be classi-
fied into one of the following two categories:
Event-based sampling: The sampling is determined by a

nuisance event process. One typical example is data traf-
fic in the Internet, where packet arrivals determine the
sampling times and the queue length is the signal to be
analyzed. Financial data where the stock market valua-
tions are determined by each transaction, is another ex-
ample.

Uniform sampling in secondary domain: Some angular
speed sensors give a pulse each time the shaft has
passed a certain angle, so the sampling times depend on
angular speed. Also biological signals such as ECGs
are naturally sampled in the time domain, but preferably
analyzed in another domain (heart rate domain).
A number of other applications and relevant references

can be found in, for example, [1].
It should be obvious from the examples above that for

most applications, the original non-uniformly sampled sig-
nal is sampled much too fast, and that oscillation modes and
interesting frequency modes are found at quite low frequen-
cies compared to the inverse mean sampling interval.

In this downsampling problem, we have non-uniform
sampling times,tm, and signal sample valuesu(tm), m =
1, . . . ,M. The aim is to find the valuesz(nT), wherez(t)
is given by filtering of the signalu(t) with the filter h(t),

and also the original sampling is faster than necessary, i.e.,
Tu = tM/M ≪ T (t0 = 0). The aim of the filtering is to re-
move frequencies above 1/(2T), which becomes the effec-
tive Nyquist frequency after downsampling.

For the case of uniform sampling,tm = mTu, two well
known solutions exist, see for example, [2]. First, ifT/Tu =
D is an integer, then (i)u(mTu) is filtered givinguf (mTu),
and (ii)z(nT) = uf (nDTu) gives the decimated signal.

Further, ifT/Tu = R/S is a rational number, then a fre-
quency domain method is known. It is based on (i) zero
paddingu(mTu) to lengthRM, (ii) computing the discrete
Fourier transform (DFT), (iii) truncating the DFT a factor
S, and finally computing the inverse DFT (IDFT), where the
(I)FFT algorithm is used for the (I)DFT.

Resampling and reconstruction are closely connected,
since a reconstructed signal can be used to sample at desired
time points. The task of reconstruction is well investigated
for different setups of non-uniform sampling. A number of
iterative solutions have been proposed, e.g., [3, 4, 1], several
more are also discussed in [5]. The algorithms are not well-
suited for real-time implementations and are based on differ-
ent assumptions on the sampling times,tm, such as bounds
on the maximum separation or deviation from the nominal
valuemTu.

Russel [5] also investigates both uniform and non-
uniform resampling thoroughly. Russell argues against the
iterative solutions, since they are based on analysis with ideal
filters, and no guarantees can be given for approximate solu-
tions. An non-iterative approach is given, which assumes
periodic time grids, i.e., the non-uniformity is repeated.

Here, we neither put any constraints on the non-uniform
sampling times, nor assumptions on the signal’s function
class. Instead, we take a more application oriented approach,
and aim at good, implementable, resampling procedures. We
outline three methods to decimateu(tm) to z(nT):
• The direct approach, based on interpolatingu(tm) to

u( jTu), whereTu = tM/M followed by a standard deci-
mation procedure for uniform sampling.

• Convolution interpolation, where a continuous-time low
pass filterh(t) is applied to the underlying continuous-
time process to givez(nT) =

∫
h(nT− τ)u(τ)dτ and the

integrand is interpolated between the available samples
u(tm).

• A frequency domain approach, where the Fourier trans-
form U( f ) =

∫
u(t)e−i2π f t dt integrand is interpolated.

The first and third algorithm are rather trivial modifications
of the time and frequency domain methods for uniformly
sampled data, respectively, while the second one is a new
truly non-uniform algorithm. We will compare performance
of these three. In all three cases, different kinds of interpola-
tion is possible, but we will focus on zero order hold (near-
est neighbor) and first order hold (linear interpolation). Of
course, which interpolation is best depends on the signal and
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in particular its inter-sample behavior. Though we prefer to
talk about decimation, we want to point out that the theories
hold for any type of filterh(t).

A major contribution in this work is a detailed analysis
of the algorithms, where we assume Additive Random Sam-
pling, ARS,

tm = tm−1 + τm, (1)

whereτm is stochastic additive sampling noise given by the
known probability density functionpτ(t). The theoretical
results show that the downsampled signal is unbiased under
fairly general conditions and present an equivalent filter that
generatesz(t) = h̃⋆ u(t), whereh̃ depends on the designed
filter h and the characteristic function of the stochastic distri-
bution.

The rest of the paper is organized as follows. The al-
gorithms are described further in Section 2. The convolu-
tional interpolation gives promising results in the simulations
in Section 3, and the Section 4 is dedicated to analysis of this
algorithm. Section 5 concludes the paper.

2. INTERPOLATION ALGORITHMS

Time domain interpolation can be used with subsequent fil-
tering. Since LP-filtering is desired, we also propose two
other methods that include the filter action directly. The main
idea is to perform the interpolation at different levels. The
problem at hand is stated as follows:

PROBLEM 1 The following is given
• a sequence of non-uniform sampling times,tm, m =

1, . . . ,M,
• corresponding signal samples,u(tm),
• a filter impulse response,h(t), and
• a resampling frequency,1/T.

Also, the desired inter-sampling time,T, is much larger than
the original mean inter-sampling time,

µT , E[τm] ≈ tM/M = Tu.

Let ⌊x⌋ denote the largest integer smaller than or equal to
x. Find

ẑ(nT), n = 1, . . . ,N,

N = ⌊tM/T⌋ , M/D,

such that|z− ẑ| is small, where

z(t) = h⋆u(t) =
∫

h(t − τ)u(τ)dτ,

is given by convolution of the continuous-time filterh(t) and
signalu(t).

2.1 Interpolation in Time Domain

It is well described in literature how to interpolate a signal or
function in, for instance, the following cases:
• The signal is band-limited, in which case the sinc inter-

polation kernel gives a reconstruction with no error [6].
• The signal has vanishing derivatives of ordern+ 1 and

higher, in which case spline interpolation of ordern is
optimal [7].

• The signal has a bounded second order derivative, in
which case the Epanechnikov kernel is the optimal in-
terpolation kernel [8].

The computation burden in the first case is a limiting factor
in applications, and for the two other examples, the interpo-
lation is not exact. We consider a simple spline interpolation,
followed by filtering and decimation as in Algorithm 1.

Algorithm 1 is optimal only in the unrealistic case where
the underlying signalu(t) is piecewise constant between the
samples. The error will depend on the relation between the
original and the wanted sampling, the larger the ratioM/N
the smaller the error. If one assumes a band-limited signal,
where all energy ofU( f ) is restricted tof < 0.5N/tM, then
a perfect reconstruction would be possible, after which any
type of filtering and sampling can be performed without er-
ror. However, this is not a feasible solution in practice, and
the band-limited assumption is seldom satisfied for real sig-
nals when the sensor is affected by additive noise.

Algorithm 1 Time Domain Interpolation

For Problem 1, withTu = tM/M, compute
(1) t j

m = argmin
tm

| jTu− tm|
(2) û( jTu) = u(t j

m)

(3) ẑ(kT) =
M

∑
j=1

hd(kT− jTu)û( jTu)

wherehd(t) is a discrete time realization of the impulse re-
sponseh(t).

REMARK 1 Algorithm 1 findsû( jTu) by nearest-neighbor
interpolation, where of course linear interpolation or higher
order splines could be used. However, simulations not in-
cluded showed that this choice does not significantly affect
the performance.

2.2 Interpolation in the Convolution Integral

Filtering of the continuous-time signal,u, yields

z(kT) =
∫

h(kT− τ)u(τ)dτ (2)

and using Riemann integration we get Algorithm 2. The al-
gorithm will be exact if the integrand,h(kT−τ)u(τ), is con-
stant between the sampling points,tm, for all kT. As before,
the error, when this is not the case, is smaller when the ratio
M/N is larger.

This algorithm can be further analyzed using the inverse
Fourier transform, and the results in [9], which will be done
in Section 4. Higher order interpolations of (2) were studied
in [10] without finding any benefits.

Algorithm 2 Convolution Interpolation
For Problem 1, compute

(1) ẑ(kT) =
M

∑
m=1

τmh(kT− tm)u(tm)

REMARK 2 When the filter h(t) is causal, the summation is
only taken over m such that tm < kT , and thus Algorithm 2 is
ready for on-line use.
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2.3 Interpolation in the Frequency Domain

LP-filtering is given by a multiplication in the frequency do-
main, and we can form the approximate Fourier transform
(AFT), [9], given by Riemann integration of the Fourier
transform, to get Algorithm 3. The AFT is formed for 2N
frequencies to avoid circular convolution. This corresponds
to zero-padding for uniform sampling. Then the Inverse DFT
computes the estimate. The AFT used in the algorithm is
based on Riemann integration of the Fourier transform of
u(t), and would be exact wheneveru(t)e−i2π f t is constant
between sampling times, which of course rarely is the case.
As for the two previous algorithm, the approximation is less
grave for large enoughM/N. This paper does not include
an investigation of error bounds. More investigations of the
AFT were done in [9].

Algorithm 3 Frequency Domain Interpolation
For Problem 1, compute

(1) fn =
n

2NT
, n = 0, . . . ,2N−1

(2) Û( fn) =
M

∑
m=1

τmu(tm)e−i2π fntm, n = 0, . . . ,N

(3) Ẑ( fn) = Ẑ( f2N−n)
′ = H( fn)Û( fn), n = 0, . . . ,N

(4) ẑ(kT) =
1

2NT

2N−1

∑
n=0

Ẑ( fn)e
i2πkT fn, k = 0, . . . ,N−1.

HereẐ′ is the complex conjugate of̂Z.

3. NUMERIC EVALUATION

We will use the following example to test the performance
of these algorithms. The signal consists of three frequencies
that are drawn randomly for each test run in order to give a
more complete test. Most interesting signals in applications
can be described in a similar fashion, but a theoretical analy-
sis would be even more beneficial.

EXAMPLE 1 A signal with three frequencies,f j , drawn from
a rectangular distribution,Re, is simulated

s(t) = sin(2π f1t −1)+sin(2π f2t −1)+sin(2π f3t), (3)

f j ∈ Re(0.01,
1

2T
), j = 1,2,3. (4)

The desired uniform sampling is given by the inter-sampling
time T = 4 s. The non-uniform sampling is defined by

tm = tm−1 + τm, (5)
τm ∈ Re(tl , th), (6)

and the limitstl and th are varied. In the simulation,N is
set to64 and the number of non-uniform samples are set so
thattM > NT is assured. This is not in exact correspondence
with the problem formulation, but assures that the results for
differentτm-distributions are comparable.

The samples are corrupted by additive measurement
noise,

u(tm) = s(tm)+e(tm), (7)

wheree(tm) ∈ N(0,σ2), σ2 = 0.1.

Table 1: RMSE values,λ in (12), for estimation of ˆz(kT), in
Example 1. The number of runs where respective algorithm
finished 1st, 2nd and 3rd , are also shown.

E[λ ] Std(λ ) 1st 2nd 3rd

Setup in (10a)
Alg. 1 0.281 0.012 98 258 144
Alg. 2 0.278 0.012 254 195 51
Alg. 3 0.311 0.061 148 47 305

Setup in (10b)
Alg. 1 0.338 0.017 9 134 357
Alg. 2 0.325 0.015 175 277 48
Alg. 3 0.330 0.038 316 89 95

Setup in (10c)
Alg. 1 0.360 0.018 6 82 412
Alg. 2 0.342 0.015 144 329 27
Alg. 3 0.341 0.032 350 89 61

Setup in (10d)
Alg. 1 0.337 0.015 59 133 308
Alg. 2 0.331 0.015 117 285 98
Alg. 3 0.329 0.031 324 82 94

The filter is a second order LP filter of Butterworth type
with cut-off frequency 1

2T , i.e.,

h(t) =
√

2
π
T

e
− π

T
√

2
t
sin(

π
T
√

2
t), t > 0, (8)

H(s) =
(π/T)2

s2 +
√

2π/Ts+(π/T)2
. (9)

This setup is used for500different realizations off j , τm
ande(tm).

We will test four different rectangular distributions(6):

τm ∈ Re(0.1,0.3), µT = 0.2, σT = 0.06 (10a)
τm ∈ Re(0.3,0.5), µT = 0.4, σT = 0.06 (10b)
τm ∈ Re(0.4,0.6), µT = 0.5, σT = 0.06 (10c)
τm ∈ Re(0.2,0.6), µT = 0.4, σT = 0.12 (10d)

and the mean values,µT , and standard deviations,σT , are
shown for reference. For every run we use the algorithms
presented in the previous section and compare their resultsto
the exact, continuous-time, result,

z(kT) =
∫

h(kT− τ)s(τ)dτ. (11)

We calculate the root mean square error, RMSE,

λ ,

√

1
N ∑

k

|z(kT)− ẑ(kT)|2. (12)

The algorithms are ordered according to lowest RMSE,(12),
and Table 1 presents the result. The number of first, second
and third positions for each algorithm during the500 runs,
are also presented.

A number of conclusions can be drawn from the previous
example:
• Comparing a given algorithm for different non-uniform

sampling time pdf, Table 1 shows thatpτ(t), in (10), has
a clear effect on the performance.
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• Comparing the algorithms for a given sampling time dis-
tribution shows that the lowest mean RMSE is no guar-
antee of best performance at all runs. Algorithm 2 has
the lowest E[λ ] for setup (10a), but still performs worst
in 10% of the cases, and for (10d) Algorithm 3 is number
3 in 20% of the runs, while it has the lowest mean RMSE.

• Usually, Algorithm 3 has the lowest RMSE (1st position),
but the spread is more than twice as large (standard devi-
ation ofλ ), compared to the other two algorithms.

• Algorithms 1 and 2 have similar RMSE statistics, though,
of the two, Algorithm 2 performs slightly better in the
mean, in all the four tested cases.

In this test we find that Algorithm 3 is often best but Algo-
rithm 2 is almost as good and more stable in its performance.
It seems that the specific setup is not as crucial for the per-
formance of Algorithm 2.

REMARK 3 It is important to note that the performance de-
pends on the setup. For example, Algorithm 2 needs the
downsampling factor M/N to be significantly larger than1
for the Riemann approximation to be good. In the examples
above it is at least a factor10. As stated before, this is the
case for all the algorithms but it still remains to investigate
the importance of the setup.

The algorithms are comparable in performance and com-
plexity. In the following we focus on Algorithm 2, because
of its nice analytical properties, its on-line compatibility, and,
of course, its slightly better performance results.

4. THEORETIC ANALYSIS OF ALGORITHM 2

Here we study thea priori stochastic properties of the esti-
mate,ẑ(kT), given by Algorithm 2. For the analytical calcu-
lations, we use that the convolution is symmetric, and get

ẑ(kT) =
M

∑
m=1

τmh(tm)u(kT− tm),

=
M

∑
m=1

τm

∫

H(η)ei2πηtm dη
∫

U(ψ)ei2πψ(kT−tm) dψ,

=
∫∫

H(η)U(ψ)ei2πψkT
M

∑
m=1

τme−i2π(ψ−η)tm dψ dη ,

=
∫∫

H(η)U(ψ)ei2πψkTW(ψ −η ; tM
1 )dψ dη , (13)

with

W( f ; tM
1 ) =

M

∑
m=1

τme−i2π f tm. (14)

Let,

ϕτ( f ) = E[e−i2π f τ ] =
∫

e−i2π f τ pτ(τ)dτ = F (pτ(t))

denote the characteristic function for the sampling noiseτ.
HereF is the Fourier transform operator. Then, Theorem 2
in [9] gives

E[W( f )] = − 1
2π i

dϕτ( f )
d f

1−ϕτ( f )M

1−ϕτ( f )
, (15)

and also an expression for the covariance, Cov(W( f )), not
repeated here. The expressions are given by straightforward
calculations using the fact that the sampling noise sequence
τm are independent stochastic variables andtm = ∑m

k=1 τk in
(14). These known properties ofW( f ) make it possible to
find E[ẑ(kT)] and Var(ẑ(kT)) for any given characteristic
function,ϕτ( f ), of the sampling noise,τk.

The following Lemma will be useful.

LEMMA 1 (LEMMA 1 IN [9]) Assume that the continuous-
time function h(t) with FT H( f ) fulfills the following condi-
tions:

1. h(t) and H( f ) belongs to the Schwartz class,S .1

2. The sum gM(t) = ∑M
m=1 pm(t) obeys

lim
M→∞

∫

gM(t)h(t)dt =

∫
1

µT
h(t)dt =

1
µT

H(0), (16)

for this h(t).
3. The initial value is zero, h(0) = 0.
Then, it holds that

lim
M→∞

∫
1−ϕτ( f )M

1−ϕτ( f )
H( f )d f =

1
µT

H(0). (17)

Proof: The proof is conducted using distributions from func-
tional analysis and we refer to [9] for details. �

Let us study the conditions onh(t) and H( f ) given in
Lemma 1 a bit more. The restrictions from the Schwartz
class could affect the usability of the lemma. However, all
smooth functions with compact support (and their Fourier
transforms) are inS , which should suffice for most cases.
It is not intuitively clear how hard (16) is. Note that, for any
ARS case with continuous sampling noise distribution,pm(t)
is approximately a Gaussian for higher m, and we can con-
firm that, for a large enough fixedt,

gM(t) =
M

∑
m=1

1√
2πmσT

e
− (t−mµT )2

2mσ2
T → 1

µT
, N → ∞,

(18)

with µT andσT being the mean and the standard deviation
of the sampling noiseτ, respectively. The integral in (16)
can then serve as some kind of mean value approximation,
and the edges ofgN(t) will not be crucial. Also, condition 3
further restricts the behavior ofh(t) for small t, which will
make condition 2 easier to fulfill.

THEOREM 1 The estimate given by Algorithm 2 can be writ-
ten as

ẑ(kT) = h̃⋆u(kT), (19a)

whereh̃(t) is given by

h̃(t) = F
−1(H ⋆W( f ))(t), (19b)

with W( f ) as in(14).

1h∈ S ⇔ tkh(l)(t) is bounded, i.e.,h(l)(t) = O(|t|−k), for all k, l ≥ 0.

©2007 EURASIP 1968

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Furthermore, if the filter h(t) and signal u(t) belong to
the Schwartz class,S [11],

Eẑ(kT) → z(kT), if
M

∑
m=1

pm(t) → 1
µT

,M → ∞, (19c)

Eẑ(kT) = z(kT), if
M

∑
m=1

pm(t) =
1

µT
,∀M, (19d)

with µT = E[τm], and pm(t) is the pdf for time tm.

Proof: First of all, (2) gives

z(kT) =
∫

H(ψ)U(ψ)ei2πψkT dψ, (20a)

and from (13) we get

ẑ(kT) =
∫

U(ψ)ei2πψkT×

×
∫

H(η)W(ψ −η)dη
︸ ︷︷ ︸

,H̃(ψ)

dψ (20b)

which implies that we can identifỹH( f ) as the filter opera-
tion on the continuous-time signalu(t), and (19a) follows.

From Lemma 1 and (15) we get

∫

E[W( f )]y( f ) =
∫

E[τe−i2π f τ ]
1−ϕτ( f )M

1−ϕτ( f )
y( f ) → y(0)

for any functiony( f ) fulfilling the properties of the Lemma.
This gives

E[ẑ(kT)] =

∫∫

H(η)U(ψ)ei2πψkT E[W(ψ −η)]dψ dη ,

→
∫

H(ψ)U(ψ)ei2πψkT dψ,

= z(kT),

whenH( f ) andU( f ) behave as requested.
Using the same technique as in the proof of the Lemma,

the third property follows. �

REMARK 4 From the investigations in [9] it is clear that
H̃( f ), in (20b), is the AFT of the sequence h(tm), cf., the
AFT of u(tm) in step (2) of Algorithm 3.

Requiring that bothh(t) andu(t) be in the Schwartz class is
not, as indicated before, a major restriction. Though, some
thought need s to be done for each specific case before ap-
plying the theorem.

5. CONCLUSIONS

This work investigated three different algorithms for down-
sampling non-uniformly sampled signals, each using inter-
polation on different levels. Numerical experiments showed
that interpolation of the convolution integral presents a good
and stable down-sampling alternative, and makes theoretical
analysis possible. The algorithm gives asymptotically unbi-
ased estimates for non-causal filters, and the analysis showed
the connection between the original filter and the actual filter
implemented by the algorithm.
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