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ABSTRACT and also the original sampling is faster than necessary, i.e

Decimating a uniformly sampled signal a factor D involves lu = tM/M < T (to = 0). The aim of the filtering is to re-
low-pass anti-alias filtering with normalized cut-off fre- MOVe frequencies above/@T), which becomes the effec-
quencyl/D followed by picking out everyDsample. Al- tive Nyquist frequency after downsampling.

ternatively, decimation can be done in the frequency do- For the case of uniform samplingy = mTy, two well
main using the fast Fourier transform (FFT) algorithm, afte KnOWn solutions exist, see for example, [2]. FirsfT jfT, =
zero-padding the signal and truncating the FFT. We outline® IS @n integer, then (iu(m',) is filtered givingus (mT,),
three approaches to decimate non-uniformly sampled sig@"d (i) 2(nT) = uf (nDT,) gives the decimated signal.

nals, which are all based on interpolation. The interpasati Further, if /T, = R/Sis a rational number, then a fre-

is done in different domains, and the inter-sample behavioflulency domain method is known. It is based on (i) zero
does not need to be known. The first one interpolates the Sigaddmgu(m'lﬁ) to lengthRM, (i) computing the discrete
nal to a uniformly sampling, after which standard decimatio Fourier transform (DFT), (iii) truncating the DFT a factor
can be applied.” The second one interpolates a continuous> @nd finally computing the inverse DFT (IDFT), where the
time convolution integral, that implements the anti-aligs ~ (DFFT algorithm is used for the ()DFT.

ter, after which every B sample can be picked out. The | Resampling and reconstruction are closely connectgd,
third frequency domain approach computes an approximat&ince a reconstructed signal can be qseq to sample at desired
Fourier transform, after which truncation and IFFT give the time points. The task of reconstruction is well investigate
desired result. Simulations indicate that the second aggiio  for different setups of non-uniform sampling. A number of
is particularly useful. A thorough analysis is therefora-pe itérative solutions have been proposed, e.g., [3, 4, 1graév
formed for this case, using the assumption that the nonhore are also discussed in [5]. The algorithms are not well-

uniformly distributed sampling instants are generated by souited for real-time implementations and are based onrdliffe
stochastic process. ent assumptions on the sampling timgg, such as bounds

on the maximum separation or deviation from the nominal
valuemT,.
1. INTRODUCTION Russel [5] also investigates both uniform and non-
Downsampling is here considered for a non-uniformly samuniform resampling thoroughly. Russell argues against the
pled signal. Non-uniform sampling appears in many applicaiterative solutions, since they are based on analysis déli
tions, while the cause for non-linear sampling can be classfilters, and no guarantees can be given for approximate solu-
fied into one of the following two categories: tions. An non-iterative approach is given, which assumes

Event-based sampling: The sampling is determined by a periodic time grl.ds, i.e., the non-un|fqrm|ty is repeated._
nuisance event process. One typical example is data traf- Here, we neither put any constraints on the non-uniform
fic in the Internet, where packet arrivals determine thesampling times, nor assumptions on the signal's function
sampling times and the queue length is the signal to bglass. Instead, we take a more application oriented approac
analyzed. Financial data where the stock market valusg@nd aim at good, implementable, resampling procedures. We
tions are determined by each transaction, is another eutline three methods to decimatgiy) to z(nT):
ample. e The direct approach, based on interpolatingn) to

Uniform sampling in secondary domain: Some angular u(jTu), whereT, = tw/M followed by a standard deci-
speed sensors give a pulse each time the shaft has mation procedure for uniform sampling.
passed a certain angle, so the sampling times depend om Convolution interpolation, where a continuous-time low
angular speed. Also biological signals such as ECGs pass filterh(t) is applied to the underlying continuous-
are naturally sampled in the time domain, but preferably  time process to give(nT) = [h(nT — 7)u(T)dT and the

analyzed in another domain (heart rate domain). integrand is interpolated between the available samples
A number of other applications and relevant references U(tm). . .
can be found in, for example, [1]. ¢ A frequency domain approach, where the Fourier trans-

It should be obvious from the examples above that for formU(f) = [u(t)e """ dt integrand is interpolated.
most applications, the original non-uniformly sampled- sig The first and third algorithm are rather trivial modificatson
nal is sampled much too fast, and that oscillation modes andf the time and frequency domain methods for uniformly
interesting frequency modes are found at quite low frequensampled data, respectively, while the second one is a new

cies compared to the inverse mean sampling interval. truly non-uniform algorithm. We will compare performance
In this downsampling problem, we have non-uniformof these three. In all three cases, different kinds of irdkerp
sampling timesty, and signal sample valuegty), m=  tion is possible, but we will focus on zero order hold (near-

1,...,M. The aim is to find the valuegnT), wherez(t)  est neighbor) and first order hold (linear interpolation). O
is given by filtering of the signali(t) with the filter h(t),  course, which interpolation is best depends on the sigrehl an
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in particular its inter-sample behavior. Though we prefert e The signal has a bounded second order derivative, in
talk about decimation, we want to point out that the theories which case the Epanechnikov kernel is the optimal in-
hold for any type of filteh(t). terpolation kernel [8].

A major contribution in this work is a detailed analysis The computation burden in the first case is a limiting factor
of the algorithms, where we assume Additive Random Samin applications, and for the two other examples, the interpo
pling, ARS, lation is not exact. We consider a simple spline interporati

followed by filtering and decimation as in Algorithm 1.
tm =1tm-1+ Tm, 1) Algorithm 1 is optimal only in the unrealistic case where

wherety, is stochastic additive sampling noise given by thethe underlying signall(t) is piecewise constant between the

s : ! . samples. The error will depend on the relation between the
known probability density functiorp,(t). The theoretical ~ ;uinai and the wanted sampling, the larger the raieN
results show that the downsampled signal is unbiased undg{."s\aler the error. If one assumes a band-limited signal
fairly general conditions and present an equivalent filet t ; '

~ ~ ) where all energy o) (f) is restricted tof < 0.5N/ty, then
generateg(t) = hxu(t), whereh depends on the designed perfect reconstruction would be possible, after which any

filte_r h and the characteristic function of the stochastic distrl-,Lype of filtering and sampling can be performed without er-
bution. ror. However, this is not a feasible solution in practiced an

The rest of the paper is organized as follows. The aly,g hang.limited assumption is seldom satisfied for real sig
gorithms are described further in Section 2. The convolu 5is when the sensor is affected by additive noise.

tional interpolation gives promising results in the sintigias
in Section 3, and the Section 4 is dedicated to analysis ®f thiA
algorithm. Section 5 concludes the paper.

Igorithm 1 Time Domain Interpolation
For Problem 1, withl, = tm/M, compute
2. INTERPOLATION ALGORITHMS 1) ti = argmin| j Ty — tr|

Time domain interpolation can be used with subsequent fil- (2)  G(jTy) = (th)

tering. Since LP-filtering is desired, we also propose two ~ M .

other methods that include the filter action directly. Themma  (3)  ZKT) = 3 ha(KT — jTu)0(jTy)
=1

idea is to perform the interpolation at different levels.eTh ) ) . o .
problem at hand is stated as follows: wherehy(t) is a discrete time realization of the impulse re-

sponsen(t).

PrROBLEM 1 The following is given

e a sequence of non-uniform sampling timég, m = , o .
1....M, ReEMARK 1 Algorithm 1 findsG(jT,) by nearest-neighbor
. ndina sianal samol interpolation, where of course linear interpolation or higy
: goﬁltﬁll?r% leg fegs inssi(t,; &ﬁg)’ order splines could be used. However, simulations not in-
P P ’ cluded showed that this choice does not significantly affect
e aresampling frequency/T.

c 2 o . the performance.
Also, the desired inter-sampling time, is much larger than

the original mean inter-sampling time, 2.2 Interpolation in the Convolution Integral
pr 2 E[Tm] ~ ty/M = To. Filtering of the continuous-time signal, yields
Let |x| denote the largest integer smaller than or equal to Z(KT) = / h(kT —T)u(t)dt )
X. Find
R and using Riemann integration we get Algorithm 2. The al-
2(nT), n=1,...,N, gorithm will be exact if the integrandi kT — 7)u(1), is con-
N = [tw/T] 2 M/D stant between the sampling pointsg, for all KT. As before,
M ’ the error, when this is not the case, is smaller when the ratio
such thatz— 2| is small, where M/N is larger. _ .
This algorithm can be further analyzed using the inverse
0 — heu®) = [ hit d Fourier transform, and the results in [9], which will be done
2(t) =hxu(t) = [ h(t—T7)u(T)dt, in Section 4. Higher order interpolations of (2) were stddie

in [10] without finding any benefits.
is given by convolution of the continuous-time filtgt) and

signalu(t). Algorithm 2 Convolution Interpolation
For Problem 1, compute

2.1 Interpolation in Time Domain

M
It is well described in literature how to interpolate a sigma (1) 2ZkT)= z Tmh(KT —tm)u(tm)
function in, for instance, the following cases: m=1
e The signal is band-limited, in which case the sinc inter-
polation kernel gives a reconstruction with no error [6].
e The Signa| has Vanishing derivatives of Oij{_ 1 and REMARK 2 When the filter h) is Causal, the summation is

higher, in which case spline interpolation of ordeis  only taken over m such tha{ & kT, and thus Algorithm 2 is
optimal [7]. ready for on-line use.
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2.3 Interpolation in the Frequency Domain
P & Y Table 1: RMSE values) in (12), for estimation ok(kT), in

LP-filtering is given by a multiplication in the frequency-do Example 1. The number of runs where respective algorithm
main, and we can form the approximate Fourier transfornjnished #t 2@ and 39 are also shown.

(AFT), [9], given by Riemann integration of the Fourier st nd rd
transform, to get Algorithm 3. The AFT is formed foN2 EA] _Sdp) 1 2 3

frequencies to avoid circular convolution. This corregimn AT 0 281Set8p0|1r12(10a)98 558 144
to zero-padding for uniform sampling. Then the Inverse DFT Alg. > 0278 0012 254 195 51
computes the estimate. The AFT used in the algorithm is Alg. 3 0'311 0.061 148 47 305
based on Riemann integration of the Fourier transform of 9. : & - 106
u(t), and would be exact whenevaft)e 2"t is constant Ao T 0338 8p0'1n7( ) 9 134 357
between sampling times, which of course rarely is the case. Alg. 5 0'325 0'015 175 277 48
As for the two previous algorithm, the approximation is less Alg' 3 0'330 0-038 316 89 95
grave for large enougM/N. This paper does not include 9- : et
an investigation of error bounds. More investigations &f th Setup in (10c)
AFT were done in [9]. Alg.1 0.360 0.018 6 82 412
Alg.2 0.342 0.015 144 329 27

Algorithm 3 Frequency Domain Interpolation Alg. 3 0.3415et8[.:)0i?12(10d:)350 89 61
For Problem 1, compute Alg.1 0337 0015 59 133 308
Q) fa==, n=0,....,2N-1 Alg.2 0.331 0.015 117 285 98

aNT Alg.3 0.329 0031 324 82 94
@U(f) =Y TmU(tm)e 2™ n=0,... N

m=1
(3) Z(fn) = Z(fon_n) =H(f)U(fy),n=0,...,N The filter is a secogd order LP filter of Butterworth type

2N-1 . with cut-off frequencys, i.e.,
5 21kT fn _ 2T

(4) 2(kT) SNT nZO Z(fn)€e , k=0,... N—1

m_—__T¢t . n
HereZ' is the complex conjugate &. h{t) = \fz?e v S'n(-r\@t)’ t>0, (8
T 2
Hie) = 32+ﬁ517/T/Ts)+(7T/T)2' ®)
3. NUMERIC EVALUATION
We will use the following example to test the performance dTh’S setup is used f&00 different realizations ofj, Tm
of these algorithms. The signal consists of three freqeanci 219€(tm)-

that are drawn randomly for each test run in order to give a Ve Will test four different rectangular distributiog8):

more complete test. Most interesting signals in applicetio I € R40.1.0.3 —02 o —0.06 10a
can be described in a similar fashion, but a theoreticalyanal m€RE0.1,0.3),  pr =02, T (10a)

sis would be even more beneficial. m€Rg0.3,05), pr=04, or=006 (100
Tme€ Rg0.4,06), ur=05  or=0.06 (10c)
EXAMPLE 1 A signal with three frequencie$;, drawn from Tm€Rg0.2,06), pur=04, or=012 (10d)

a rectangular distributiome is simulated
and the mean valuegly, and standard deviationsy, are
s(t) = sin(2mfit — 1) +sin(2mfat — 1) +sin(2mfst), (3)  shown for reference. For every run we use the algorithms
1 presented in the previous section and compare their rdsults
f; € Rg0.01, f)’ =123 (4) the exact, continuous-time, result,

The desired uniform sampling is given by the inter-sampling z(kT) = / h(kT —1)s(1)dT. (11)
timeT = 4 s. The non-uniform sampling is defined by
We calculate the root mean square error, RMSE,
tm=1Itm-1+ Tm, )

Tm € Re(t), th), (6) = \/ % Z |z(KT) — 2(kT)|2. (12)

and the limitsty andty, are varied. In the simulatiomy is

set to64 and the number of non-uniform samples are set sqhe algorithms are ordered according to lowest RMSE),
thatty > NT is assured. This is not in exact correspondencend Table 1 presents the result. The number of first, second
with the problem formulation, but assures that the resolts f and third positjons for each a[gorithm durjng theo runs,

differentty-distributions are comparable. are also presented.
The samples are corrupted by additive measurement
noise, A number of conclusions can be drawn from the previous
example:
U(tm) = S(tm) +€(tm), (7) e Comparing a given algorithm for different non-uniform
sampling time pdf, Table 1 shows that(t), in (10), has
wheree(tm) € N(0,02), 02 =0.1. a clear effect on the performance.
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e Comparing the algorithms for a given sampling time dis-and also an expression for the covariance, @6 )), not
tribution shows that the lowest mean RMSE is no guarrepeated here. The expressions are given by straightfdrwar
antee of best performance at all runs. Algorithm 2 hagalculations using the fact that the sampling noise seaquenc
the lowest EA| for setup (10a), but still performs worst 1y, are independent stochastic variables &ne: S ; Ti in
in 10% of the cases, and for (10d) Algorithm 3 is number(14). These known properties @ (f) make it possible to
3in 20% of the runs, while it has the lowest mean RMSEfind E[2(kT)] and Va(z(kT)) for any given characteristic

e Usually, Algorithm 3 has the lowest RMSES{position),  function, ¢ (f), of the sampling noise.
but the spread is more than twice as large (standard devi- The following Lemma will be useful.
ation of A), compared to the other two algorithms.

e Algorithms 1 and 2 have similar RMSE statistics, though,Lemma 1 (LEMMA 1IN [9]) Assume that the continuous-
of the two, Algorithm 2 performs slightly better in the time function Iit) with FT H(f) fulfills the following condi-
mean, in all the four tested cases. tions:

In this test we find that Algorithm 3 is often best but Algo- 1 t) and H(f) belongs to the Schwartz clas#,!

rithm 2 is almost as good and more stable in its performance2 Th t) — M t) ob
It seems that the specific setup is not as crucial for the per2: 1€ SUM@(L) = ¥ m_q Pm(t) obeys
formance of Algorithm 2.

lim /gM (Oh(t)dt = / Lhndi=L1H0), @e)
REMARK 3 Itis important to note that the performance de- M—eo Hr Hr
pends on the setup. For example, Algorithm 2 needs the )
downsampling factor WN to be significantly larger thad for this h(t). _
for the Riemann approximation to be good. In the examples3. The initial value is zero, (9) = 0.
above it is at least a factotO. As stated before, this is the Then, it holds that
case for all the algorithms but it still remains to investiga
the importance of the setup. . 11— ¢ (F)M 1

'\”an. 1= 6:(f) H(f)df uTH(O). a7

The algorithms are comparable in performance and com-
plexity. In the following we focus on Algorithm 2, because

of its nice analytical properties, its on-line compatiiland, Proof: The proof is conducted using distributions from func-

e ali tional analysis and we refer to [9] for details. |
of course, its slightly better performance results. " . .
i P Let us study the conditions oh(t) and H(f) given in
4. THEORETIC ANALYSISOF ALGORITHM 2 Lemma 1 a bit more. The restrictions from the Schwartz

class could affect the usability of the lemma. However, all
Here we study the priori stochastic properties of the esti- smooth functions with compact support (and their Fourier
mate,Z[kT), given by Algorithm 2. For the analytical calcu- transforms) are in#, which should suffice for most cases.
lations, we use that the convolution is symmetric, and get It is not intuitively clear how hard (16) is. Note that, foryan

ARS case with continuous sampling noise distributign(t)

X M is approximately a Gaussian for higher m, and we can con-
2KT) = ngl Tmh(tm)U(KT —tm), firm that, for a large enough fixed
M 2
i ; _ M _ (tzmuy)
= Z Tm/H(n)elznmmdn /U(w)eIZITL[l(kT tm)dev oM (t) = z ;e 2mal — i N — oo
m=1 ’ WL V2o pr’ ’

oTKT — - iom(—n)t (18)
= [[HMU@)E™T S e 2 Dndydn,
» m=1 with ut and ot being the mean and the standard deviation
= // H(n)U<w)é2"“’kTW(w—n:t&”)dwdm (13) of the sampling noise, respectively. The integral in (16)
. can then serve as some kind of mean value approximation,
and the edges aj(t) will not be crucial. Also, condition 3

with further restricts the behavior ¢it) for smallt, which will
M ) make condition 2 easier to fulfill.
W(tit) = 5 Tme 2, (14)
m=1 THEOREM 1 The estimate given by Algorithm 2 can be writ-
Let, ten as

¢:(f) = E[e271] = /efiZHprT(T)dT — Z(p:(t)) 2(kT) = hxu(kT), (19a)

- . . _ whereh(t) is given b
denote the characteristic function for the sampling naise Hisg y

Here.% is the Fourier transform operator. Then, Theorem 2 ~ _
in [9] gives P A(t) = 2 L(H«W(1))(1), (19)
EW(H)] 1 doo(f) 1— g (H)M as) with W(f) as in(14).
Co2m df 1-¢(f) 7 Ihe .7 & th)(t) is bounded, i.eh®) (t) = #(|t| %), for all k| > 0.
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Furthermore, if the filter kt) and signal (t) belong to
the Schwartz classy’ [11],
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