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ABSTRACT
The aim of this study is to automatically classify indi-

viduals with temporomandibular disorder and healthy sub-
jects. The process of automated classification requires mea-
surement of features that can be used to distinguish between
different classes. We used maximum Lyapunov exponents to
measure the changes in the dynamics of the chewing pat-
tern, the number of peaks in the normalized highpass filtered
data to find the abnormalities in both opening and closing of
mouth, normalized skewness and kurtosis to measure the dis-
tribution profile of the data samples, likelihood information
to quantify the probability of the click events in either open-
ing or closing process, and peak amplitude to measure how
severe the abnormality is. Finally, using the above features
together with Support vector machine to classify all subjects
as belonging to individuals with TMD or not. The early ex-
periments show encouraging results.
Keywords: Temporomandibular disorder (TMD), maximum
Lyapunov exponents, support vector machine (SVM).

1. INTRODUCTION

Temporomandibular disorders (TMDs) occur as a result of
problems with the jaw, temporomandibular joint, and sur-
rounding facial muscles that control chewing and moving the
jaw[1][2].Temporomandibular joint (TMJ) is the hinge joint
that connects the lower jaw (mandible) to the temporal bone
of the skull, which is immediately in front of the ear on each
side of your head. The joints are flexible, allowing the jaw to
move smoothly up and down and side to side. Symptoms of
TMD include headaches, tenderness of the chewing muscles,
and clicking or locking of the joints [3].

Current methods for TMD detection involve a physical
examination by an expert in the area [4]. A dentist or clini-
cian almost always diagnoses a TMD based solely on a per-
son’s medical history and on a physical examination. Recent
research attempts to detect TMD on the basis of audio analy-
sis [5]. Electronic recording of sounds emitted from the jaw
during jaw opening and closing. TMJ sound has been sug-
gested as a potential tool to characterize the TMDs.

We attempt to develop a method for detection of TMD
based on visual analysis of facial movement. In this study, we
look at changing facial features in the video frames recorded
using one video camera through frontal-lateral direction. Af-
terwards, we analyse the motion of colour markers placed
to the locations of interest on subjects’ faces. We use im-
age processing methods to extract the positions of markers in
video frames.
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The important locations with significant changes during
mouth movement are around the TM bone. The patients used
in our experiments were examined by our clinical expert col-
laborator. The marker designations are: left side of TM bone
(lt). Two additional markers are attached to tip of the chin
and tip of the nose. We use the latter markers to suppress the
head movement in various directions. In our experiments,
we used video sequences of eight subjects, two of which had
TMD (class 1) and six healthy people (class -1).

2. METHODS

In this study, we analyse the information related to the dy-
namics of movement of the colour markers placed on the face
around the mandible. Next, we explore how these dynamics
can be measured and used here.

2.1 Chaotic Biological Movement
Van Emmerik et al. [6] in a tutorial overview, discuss how
various seemingly simple human actions are the result of the
interaction of complex systems. West and Scafetta [7] anal-
yse the stride length of humans which have been shown to
be slightly multifractal and can be modelled using nonlinear
oscillators. Tracey et. al used chaotic measures to identify
humans by their gait, which also set a significant precedent
[8]. We expect that the process of chewing has a chaotic be-
havior and it is more chaotic for the individual with TMD
rather than for healthy subjects. To test this hypothesis, we
use the maximum Lyapunov exponent to evaluates the dy-
namics of the system.

The concept of phase-space analysis of chaotic systems is
extended here to enable joint analysis of a number of motion
trajectories at the same time. The trajectories specify motion
of a number of colour markers during the process of opening
and closing mouth. We can thus characterize their behavior.

2.2 Dynamical System
Consider the real-valued nonzero time series (x(1), . . . ,x(N))
of sufficient length N. We create the time delay vectors as
follows:

V = (x(n),x(n+ τ), . . . ,x(n+(d−1)τ)) (1)

where τ is the time delay, d is the embedding dimension, and
n = N− (d−1)τ .

According to the embedding theorems [9] [10], if the
time series is generated from a deterministic system, there
generally exists a function F : Rd 7→Rd such that:

Vn+1 = F(Vn) (2)
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Figure 1: Mutual information of the left TM marker (lt) for
two samples.
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Figure 2: False nearest neighbors of the left TM marker (lt)
for two samples.

when the embedding dimension d is sufficiently large this
mapping has the same dynamic behavior as that of the un-
derlying unknown system in the sense of topological equiva-
lence.

The remaining problem is how to choose a τ and d, i.e, a
time-delay and embedding dimension, such that the above
mapping exists. From Takens’ embedding theorem [9] it
does not matter what time delay is selected in a ‘generic’
sense. In practice, however, because we have only a finite
number of data points available with limited measurement
precision, a good choice of τ is deemed to be important in the
phase space reconstruction. In addition, determining a good
embedding dimension d depends on the judicious choice of
τ . For more discussion on the topic, see the related articles
such as [11].

To ensure selection of a minimum embedding dimension,
we select the time-delay by the mutual information [12]. A
sample plot is shown in Fig. 1. Each plot shows the mutual
information of colour marker against the time delay. The
point at which the first minimum of the plot is taken is the
best value for τ which τ = 2 in this case and for all samples.

The next challenging problem is selection of the embed-
ding dimension. The method of false nearest neighbors [13]
is employed to choose the embedding dimension. A sample
plot is shown in Fig. 2. Each plot shows the false nearest
neighbors of the colour markers against the embedding di-
mension. The best value for all samples is d = 5.

2.3 Maximum Lyapunov Exponent
Lyapunov exponents measure the average exponential sepa-
ration between the nearby phase space trajectories. It is the
generic mechanism for deterministic randomness and unpre-
dictability. There are several measures of chaotic behaviour,
the maximum Lyapunov exponent λ1 being the most useful
and commonly used. Positive Lyapunov exponents, for al-

most all initial conditions in a bounded dynamical system,
are widely used as the definition for deterministic chaos. One
of the more recent methods to calculate λ1 is by Rosenstein
[14] and independently, by Kantz [15]. This method is suit-
able for small and noisy data sets. The maximum Lyapunov
exponent can be defined using the following equation where
d(t) is the average divergence at time t and C is a constant
that normalizes the initial separation:

d(t) = C eλ1t . (3)

The maximum Lyapunov exponent is estimated as the
mean rate of separation of the nearest neighbors:

λ1 =
1

i∆t
1

M− i

M−i

∑
j=1

ln
d j(i)
d j(0)

(4)

where ∆t is the sampling period of the time series and d j(i) is
the distance between the j-th pare of nearest neighbors after i
discrete time steps, i.e., i.∆t seconds. Here M = N−(d−1)τ
is the number of reconstructed points, d is the embedding di-
mension and can be selected using false nearest neighbors
[13] and τ is time delay which can be selected using mutual
information [12]. From the definition of λ1 given in Eq (3)
we assume the j-th pair of nearest neighbors diverge approx-
imately at rate given by the maximum Lyapunov exponent.

d j(i) = C j eλ1(i∆t) (5)

where C j is the initial separation. By taking the logarithm of
both side of Eq (5), we obtain

lnd j(i) = lnC j +λ1(i∆t). (6)

where ln denotes natural logarithm. The above equation
represents a set of approximately parallel lines (for j =
1,2, ...,M), each with a slope roughly proportional to λ1. The
maximum Lyapunov exponent is easily and accurately calcu-
lated using a least-squares fit to the average line defined by

y(i) =
1
∆t
〈lnd j(i)〉. (7)

where 〈·〉 denotes the statistical average over all values of
j. We calculate the values of maximum Lyapunov exponent,
λ1, to identify chaotic behavior of the colour marker signals.

Next, in order to use both dynamic and static features
in classification of TMD, support vector machine (SVM) is
briefly explained.

3. CLASSIFICATION USING SVM

SVMs have been proven to be a successful machine learn-
ing tool for variety of classification problems since they were
introduced by Vapnik [16]. SVMs have demonstrated good
generalization performance in face recognition [17], and they
also bring some hopes for the biomedical data classification
[18]. The goal of an SVM is to find an optimal separating
hyperplane (OSH) for a given feature set. The OSH is found
by solving the following constrained optimisation,

minZ,b,γi

(
1
2
‖ Z ‖2 +C

l

∑
i=1

γi

)
(8)
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Figure 3: Normalized highpass filtered data of TM marker
for healthy (top) and an individual with TMD (bottom).

s.t. qi(Z.gi−b)+ γi ≥ 0 (i = 1, · · · , l)
where, l is the number of training vectors and qi ∈ {±1} are
the output targets, ‖ Z ‖2 = ZT Z is the squared Euclidean
norm and (.) is the dot product. The parameter Z determines
the orientation of the separating hyperplane, γi is the i-th pos-
itive slack parameter, and gi is a vector containing the fea-
tures gi = [ f1(i), . . . , fn(i)], where f is the feature and n is
the number of features. The non negative parameter C is the
(misclassification) penalty term, and can be considered as the
regularization parameter selected by the user.

A larger C is equivalent to assigning a higher penalty to
the training errors. The parameter C is set to a value which
yields the lowest cross-validation (CV) test error. SVs are
the points from the dataset that fall closest to the separating
hyperplane. Any vector gi that corresponds to a non-zero
αi is a support vector (SV) of the optimal hyperplane. It is
desirable to have the number of SVs small to have a more
compact and parsimonious classifier. The OSH (generally
nonlinear) is then computed as a decision surface of the form

f (g) = sgn

(
Ls

∑
i=1

qiαiK(gs
i ,g)

)
. (9)

where sgn(.) ∈ {±1}, gs
i are SVs, K(gs

i ,g) is the nonlin-
ear kernel function (if K(gs

i ,g) = gs
i .g the SVM is linear),

and Ls is the number of support vectors. A Kernel for a non-
linear SVM projects the samples to a feature space of higher
dimension via a nonlinear mapping function.

4. FEATURES

The most effective features are measured in this section. The
static features are measured from the normalized highpass
filtered data. The highpass filter is used to remove the effect
of mouth movement and enhance the changes in the TMJ
within the time sequence. The signals are normalized to sup-
press the changes in picture/video size. Fig. 3 shows the
time sequence of a healthy (top figure) and that of an indi-
vidual with TMD (bottom figure) in the normalized highpass
filtered data.

Feature 1

Detecting the presence of chaos in a dynamical system is an
important problem that is solved by measuring the maximum
Lyapunov exponents. Here, we use the value of λ1 as a fea-
ture. This is measured from the normalized data and it is
observed that the chewing signal for subjects with TMD is
more chaotic than healthy individuals’ signals. We denote
f1 = λ1. We used the normalized data to calculate the value
of λ1.

Feature 2

In many applications, it is important to detect the outliers
i.e., unusual abnormal values. In medicine, unusual values
may indicate the diseases (see, e.g., [19]). One approach
to outlier detection is that we start with N normal values
x1, · · · ,xN , compute the sample average x̄ , the sample stan-
dard deviation σ , and then mark a value x as an outlier if x
is outside the interval (x̄−aσ , x̄+aσ) (for some preselected
number a). We can therefore identify the outliers as those
values that are outside the aσ intervals (for an application
of this method in engineering, see, e.g. [20]). Here, we se-
lected a = 3 and used the normalized highpass filtered data.
f2 = the number o f observations > 3σ
or the number o f observations <−3σ .

Feature 3

This feature is a measure of the likelihood of a peak sub-
ject to the gradient of the smoothed waveform. Let u(t) be
the lowpass filtered data. Denote ∇tu(t) (approximated as
∇tu(t) = u(t)−u(t−1) ) and define

I∇t u(t) =

{ 1 peakat ∇tu(t)≥ 0
0 no peak
−1 peakat ∇tu(t) < 0

(10)

We denote f3 = I∇t u(t).

Feature 4

A large ratio between the peak (outlier) amplitude and the
variance of a signal suggests that there is an unusual value in
the data. The equation describing this feature is given by

f4 =
max{|x(t)|}

σ2
x

t = 1, · · · ,N (11)

where x(t) is normalized highpass filtered data , max(.) is
a scalar valued function that returns the maximum element
in a vector, σ is the standard deviation of x(t) and |.| is the
absolute value applied element-wise.

Feature 5

This feature corresponds to a third order statistic of the data.
The normalized skewness for each signal is given by

f5 =
∣∣∣∣
E{x3(t)}

σ3
x

∣∣∣∣ t = 1, · · · ,N (12)

Hence we take the absolute value of the skewness.
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Feature 6
Kurtosis is a measure of how sharp a symmetric distribution
is when compared to a normal distribution of the same vari-
ance. It is defined as:

f6 =
E{x4(t)}

σ4
x

t = 1, · · · ,N (13)

Kurtosis is actually more influenced by scores in the tails of
the distribution than scores in the centre of a distribution.
Accordingly, it is often appropriate to describe a leptokurtic
distribution as “fat in the tails” and a platykurtic distribution
as “thin in the tails”.

5. RESULTS

In our experiments, we used video sequences of eight sub-
jects, two of which had TMD (class 1) and six healthy people
(class -1). Three blue markers were placed around the TM
bone on the face of each subject. Each subject was filmed
performing five cycles of chewing motion using a high reso-
lution (640×480 pixels) video camera at 30fps. On average,
400 video frames were obtained per subject.

The positions of the markers were automatically ex-
tracted using image processing techniques and used to ob-
tain the above six features, which were subsequently used in
SVM classification. In addition, we used cross-validation to
test the accuracy of SVM performance.

Table 1 represents a summary of the results which were
obtained. Column 2 of this table shows the individuals in this
study. For each individual we divided the data into two trials.
The first four rows show individuals with TMD and the rest
show healthy individuals. Column 3–8 represents the value
of f1– f6.

As it appears from column 3 of Table 1, the value of λ1
(is rounded) for each colour marker is positive indicating that
they have chaotic behavior. It must also be mentioned that the
value of λ1 for the individuals with TMD, rows 1–4, is larger
than those for healthy subjects, rows 5–16 as we expected.

The results of feature 2 are presented in column 4. As it
is shown in this column, the number of peaks for the indi-
viduals with TMD is greater than those for healthy subjects,
which confirms the significance of this feature for the clas-
sification. We can see a similar pattern for the rest of the
features. For all features there are significant discrepancies
between the values for individuals with TMD, and healthy
subjects. Feature 3 is useful to distinguish between the peaks
in the signals during the chewing process related to TMD and
other non-relevant peaks.

After applying SVM to the above features extracted from
the video sequences for eight subjects, two sets per subject,
we were able to classify correctly all sixteen video sequences
as belonging to patients with TMD or not.

6. CONCLUSIONS

An effective method for classification of TMD using video
has been proposed here. In our approach, both static and
dynamic features are measured from a number of time se-
quences and classified using SVM. The SVM correctly clas-
sified the data for all subjects. A general system for deter-
mination of TMD types may be developed by fusing other
recording modalities such as sound and electromyogram
(EMG) with the above procedure.

Table 1: list of feature value.

N Subject f1 f2 f3 f4 f5 f6
1 A1 0.099 8 1 254.14 0.16 6.79
2 A2 0.099 8 1 253.88 0.16 6.76
3 C1 0.098 6 1 177.66 0.16 5.64
4 C2 0.098 6 1 186.24 0.01 6.25
5 K1 0.061 0 0 92.11 0.01 3.15
6 K2 0.061 0 0 78.81 -0.03 2.73
7 L1 0.075 0 0 56.75 -0.03 2.78
8 L2 0.075 0 0 55.59 -0.05 2.78
9 M1 0.040 0 0 61.91 -0.01 2.96
10 M2 0.040 0 0 61.02 0.03 2.95
11 Q1 0.073 1 -1 96.24 -0.08 3.15
12 Q2 0.073 2 1 96.31 0.14 3.31
13 S1 0.069 2 1 88.46 0.07 3.12
14 S2 0.069 0 0 72.36 0.02 2.89
15 Y1 0.069 0 0 72.83 -0.08 2.99
16 Y2 0.069 1 1 80.41 -0.06 3.06
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