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ABSTRACT yA Emitter

In emitter localization by unmanned aerial vehicles (UAVS)
the objective of path planning is to determine the best UAV
trajectories so as to maximize the instantaneous locatinat ~P
performance subject to various constraints. In this paper L6
we propose gradient based waypoint update algorithms for -
UAVs equipped with angle-of-arrival (AOA) and scan based e ~~Obserer o ver
sensors. The optimization criterion used by the waypoint up . trajectory
date algorithms is to maximize the determinant of the ap- )
. . . . . . 0
proximate Fisher information matrix. The effectiveness of 0 X
the path planning algorithms is illustrated with severahco
puter simulations. Figure 1: Two-dimensional bearings-only emitter localiza
tion from a single moving platform.

1. INTRODUCTION

The objective of passive emitter localization is to detewni
the location of an emitter by processing the emitter signal
received by several sensors or a moving sensor platform. Pa
sive emitter localization finds application in mobile commu
nications, wireless sensor networks and electronic warfar 2. AOA LOCALIZATION

to name but a few. The receiving platforms may employ senThe two-dimensional passive emitter localization problem
sors capable of measuring angle of arrival (AOA), time ofysjng AOA measurements is depicted in Fig. 1 wheigthe
arrival (TOA), time difference of arrival (TDOA), scan time |ocation of a stationary emitter, agi andry are the bearing
Doppler shift or received signal strength. Hybrid locai@a  angle and the sensor location, respectively, at time ibstan
techniques combining some of these measurements are alg0The relationship between the bearing angle, sensor loca-

esults are presented in Section 8. The paper concludes in
ection 9.

available. _ _ ) tion and emitter location is given by the following nonlinea
In this paper we consider optimal path planning for a pargsquation:

ticular type of receiving platform, namely unmanned aerial 1 Dy

vehicles (UAVs) equipped with AOA and scan based sensors. O = tan” Ax k=1,...,N (1)

The AOA localization has a rich history (see e.g. [1]). The
key idea is to triangulate multip[e bearing Iines emanatingvhereAy, = Py — lyk andAX = px—rxk. Herep=[py, py]T
from UAVs. The scan based localization exploits the geometys the emitter location vector amg= [ry, rylT is the sensor
ric relationship between the emitter location and scan timg,cation at time instark. o

measurements based on the assumption of constant beam ro- tpe objective of emitter localization is to estimate the

tation speed [2]. Itis also related to rotating directiob@a-  epjtter |ocationp from a sequence of bearing measurements
con techniques [3], [4] and landmark based robot locabrati \er the interval K k< N. In practice, the bearing measure-

techniques [S]. o , . ments are corrupted by an additive noise, i.e.,
The approach adopted in this paper is to optimize UAV
trajectories by locally maximizing the determinant of tiwe a B = B+ Ny @)

proximate Fisher information matrix [6] each time a way-

point update is to be computed. This is equivalent to Minypere thef, k=1,...,N, are the bearing measurements and
imizing the estimation uncertainty. The Fisher informatio nk is the bearing noise. We assume thais zero-mean i.i.d.

matrix is approximated by replacing the true emitter locaz,ssjan with variance2. The bearing noise variance can
tion with its maximum likelihood estimate [7]. The paper is vary withk.

organized as follows. Sections 2 and 3 provide an outline

of the AOA and scan-based emitter localization problems. 3. SCAN BASED LOCAL I ZATION

Section 4 discusses a hybrid localization technique inrglv

both AOA and scan based sensors. Section 5 presents the fiyre scan-based emitter localization algorithm [2] is ar@ff
brid maximum likelihood estimator for emitter location. In tive method for localizing scanning emitters such as a radar
Section 6 the Fisher information matrix for scan-based lowith a rotating beam. It exploits the constant scan rate®f th
calization is derived. Gradient-based UAV trajectory opti radar antenna beam in order to derive geometric constraints
mization techniques are developed in Section 7. Simulationn the emitter location. Fig. 2 depicts a scanning emitter in
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Figure 2: The subtended anglg, depends on scan rate

and TOI of the emitter beam at two receivers. Figure 3: Hybrid localization with three UAVs. All three
UAVs have scan time sensors and UAV3 has an additional
. . . ) (AOA sensor.
two-dimensional plane with scan rate (angular velocity) o

w rad/s and two receivers at locatiopgand p, intercepting
the emitter beam. Assuming prior knowledgeuafthe angle  AOA/scan based hybrid localization not all UAVs are re-
a1 subtended by the chord between the two receivers can kfiired to have both AOA and scan based sensors. Some
readily obtained from time of intercept (TOI) measurementsAvs may only have one of these sensors. The use of hybrid
of the emitter bearty andt; at receiversp; andp,, respec-  sensors with an increased number of measurements in gen-
tively, eral leads to an improved overall localization performance
012 = W[tz —t. (3)  Fig. 3 depicts a geolocation scenario where all three UAVs
The subtended angle is constrained to lie in the intdfvaff ~ have scan time sensors and UAV3 has an additional AOA

by ensuring that the emitter beam is intercepted during th&&nsor.

shorter sweep time between the two receivers. The TOIl mea-

surements correspond to the peak location of the mainlobe 5. MAXIMUM LIKELIHOOD ESTIMATOR FOR
of the emitter beam. Equation (3) ignores the additional HYBRID LOCALIZATION

time delay due to the range difference between the receive'réOA and scan time measurements can be modelled as

(e||a?1;15%ru12 ;and?i; fﬁ!zé/ (;Z\:jhg;e”r'OHZad:gg:]efotrhtehggﬂg{erGaussian processes with joint conditional pdfs (likelithoo
; L P prop 35 : functions) faoa (6|p) and fsg(a|p), respectively, wheré
signal which is assumed to loe= 3 10° km/s. In practicé 54 are AOA and subtended angle measurement vectors.

this time difference is negligible compared with—t1) and e yalue ofp that maximizes the likelihood function is the
is therefore ignored in the following development. Given  maximum likelihood estimate (MLE) of the emitter location:
and the receiver locations, and p,, the loci of all possible

emitter locations form a circular arc with centre paift and 2 _ i n xf
radiusr 1y: Paoa = argma ron(6[p)  Pss argma sa(alp) (6)

G _PitP pem2 PP P2 Puf2 4) The maximization of log-likelihood (natural logarithm

12 12 V. : S : :

2 2tanaiz 2sina12 of likelihood function) reduces MLE to a nonlinear least-
e ) _ squares (NLS) problem:
whereR;, " " is the£+90° rotation matrix
A T -1
=argmayxe PIAVINC g =0-0
Rie_ [ iol qtol} | - Paoa gp 20A (P)Za5a€20A (P)  €aoa(P) (p)
Psg = arggﬂ%és(ngéess(p) ess(p) =a—a(p)

This follows from a circle property that all angles subteshde

by a given chord are the same as long as they are on the safjfieres is the covariance matrix of the relevant sensor noise,
side of the chord (l.e., they remain either acute or obtuse}mdg(p) anda (p) are exact AOA and subtended angles for
Only one of the circle centresy, corresponds to the true an emitter ap. We note that the covariance matrix is depen-
emitter location. The true circle centre can be determine@eant on the emitter range due to the link between the noise
from additional information such as angle of arrival or dire  \,3riance and SNR [7].
tion of beam rotation. We will denote the true circle centre 5 hybrid MLE is easily formulated by augmenting the
by 1. error vectors and corresponding covariance matrices in an
appropriate manner. For example, if every UAV had AOA
4. AOA/SCAN BASED HYBRID LOCALIZATION and scan based sensors, then the hybrid MLE combining all

In hybrid localization UAVs are equipped with a heteroge-measurements would be given by

nous mix of sensors, thereby making a variety of sensor mea- T 1

surements available for localization purposes. In this pa- . |eaoa(p) Zpon 0| " |enoa(p) 7
per AOA/scan based hybrid localization is considered. In P = ess(p) 0 s ese(p) |- (7)
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For different sensor combinations the above hybrid estimat  The local optimization achieved by (13) is not always
can be easily modified by removing relevant entries of thelesirable especially if it leads to significantly long cmgs
error vectors and the corresponding rows and columns of thiimes for UAVs. By compromising the initial performance a
covariance matrices. little one can achieve faster convergence on the emitter. To
achieve this we introduce a “force” paramefer
6. FISHER INFORMATION MATRIX

The Cramer-Rao lower bound (CRLB) gives the smallest co- Iu(s(k) = = ‘]T(S(k))A . (15)
variance matrix achievable by any unbiased estimator: Y1 llpi(k) — p(k) 1P
CRLB= & 1(p) (8) The smalleiB the better the initial localization performance,
_ _ . . _ and the largep the faster the UAVs get to the emitter. The
where®(p) is the Fisher information matrix (FIM) paramete can be increased withto improve overall per-
. formance. Fo3 = 0, Jy andJr are essentially identical.
17 7} In electronic warfare applications the UAVs may need
PR = E{(‘?pln 1 p)) (t9p|n f(@ p)) } ©®) {0 avoid certain geometric locations because of perceived
threat. In optimized path planning soft constraints can be

imposed on certain threat locations with a specified risle Th
larger the risk associated with a threat the larger the elésir
UAV clearance will be. Circular soft constraints can be in-
cluded in the cost functiod (s(k)) as

Here f(z|p) is the log-likelihood function. Led, denote the
Jacobian evaluated at the true emitter locafonFIM can
then be expressed as

d(p) =Jo= 1o (10)

Ny 3
— I pj (K)—Gill/Ki
where 3 is the covariance matrix of the single-sensor or  Jo(S(K)) = Jw (S(k))_rlﬂ (1—3 Ipi (9 C”/K) (16)
hybrid-sensor measurement noise. i=1j=1

7. GRADIENT BASED WAYPOINT UPDATE WhereNT is the number of threats, thJeare the threat loca-
ALGORITHMS tions, and thex; > 0 are the threat intensities (risk associated
with each threat). In (16) the multiplicative factors irdtwe
For an efficient estimator the area oblerror ellipse (39.4% global unstable minima at threat locations.

confidence regiom, is inversely proportional to the deter- A certain minimum distance between the UAVs and the
minant of FIM: T emitter must be maintained in order to maintain reception of
Aig = YR (11)  the emitter signal due to vertical radar beamwidth. A hard
[®(p)] constraint can be imposed on the geometry to realize this

The path planning optimization criterion adopted in thegzap Minimum clearance requirement. [f tiky UAV reaches a
is to minimizeA;, by adjusting the UAV waypoints. This is distancedmi from the emitter, the hard constraint projects it
equivalent tomaximizing the determinant of FIMVe note  onto a circle of radiusiyn centred at the estimated emitter
that the maximization of the determinant of FIM leads to thocation:
minimization of the localization uncertainty. (k1) pK

Let s(k) be the 6x 1 vector containing three UAV loca- _ 4 b —-p o
tions at egn)integer time index Pi(kt-1) = din Ipi(k+1) — pK)|| +pt. A7)

P1(K) When all UAVs reach the hard constraint, they eventually
s(k) = | p2(k) | - (12)  attain the optimal angular separation minimizing MSE.

P3(K)
The gradient descent algorithm 8. SIMULATIONS
037 (s(K)) Several simulations have been carried out to demonstrate th
s(k+1) = s(k) +M(k) ., k=0,1,... (13) performance of the optimized path planning algorithmsgisin

9s(k) three UAVs equipped with AOA and scan based sensors. The
roduces waypoints for the UAVs by locally maximizing the standard deviation of AOA sensors is 2 a 50-km emitter
8 tormimant y]p s FIM¥ y 9™ range. The standard deviation of scan based measurements
eterminant ot an approximate Fivi: is 10 ms at 50 km. The UAVs cruise at a constant speed
(B of 30 m/s. The emitters to be geolocated ar¢0a]’ and
Jr(s(k)) = [@(pk)) (14) [~10,50 km (no prior knowledge of the emitter locations
where (k) is MLE of the emitter location at tim&. The is available to the UAVs). Time separation between waypoint
step-size matri (k) normalizes the waypoints so as to gen-updates is 30 s. The paramefeis increased linearly from
erate equal displacements for each UAV. This avoids UAVS t0 Bmax during the geolocation mission for each emitter.
closer to the emitter getting more favourable treatment andhe emitter scan rate = rrrad/s. The minimum allowed
larger waypoints than other UAVs that are farther away fronflistance from the emitter igyin = 5 km. The initial UAV
the emitter and also ensures constant velocity cruisinglfor locations arep; (0) = [—45,25" km, p,(0) = [—-42,30]" km
UAVs. The gradient of the cost function in (13) can be nu-and p3(0) = [~44,33T km. There are two threats af =
merically approximated by first-order finite differencek [7  [-19,18" km andc, = [-25,2]" km.
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are used and threats are ignored.Gadx = 0, (b) Bnax= 20,
and (c) the corresponding MSE plots for the first emitter.

exhibit strong baseline expansion initially and then form a

120 140 160

approximately 20 waypoints, which is equal to 10 min (see

Fig. 4(c)).
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Figure 5: Optimized UAV paths (scan time sensors only)
with soft constraints fonax = 10. (a)k1 = K2 = 1 and (b)

K1 =Ko =5.

The impact of soft constraints on the optimized trajecto-
ries for scan based sensors is shown in Fig. Py = 10.
In Fig. 5(a) both threats have a risk of ki(= k» = 1)
whereas in Fig. 5(b) the risk of the threats is® £ k2 = 5).
The clearance of the threats by the UAVs is increased with

largerk;.

The optimized trajectories for AOA sensors is shown in
Fig. 6 for Bmax= 10. The threats have identical risks of 1 and
5in Figs. 6(a) and 6(b), respectively. Note that the optadiz
) o ) trajectories for scan based and AOA sensors are markedly
Figure 4: Optimized UAV paths when only scan time sensorgjifferent. While for scan based localization the optimal an-
gular separation between the three UAVs is 1@Bien they
are equidistant from the emitter, the AOA localization is op
timized if either 60 or 120 angular separation is achieved

Fig. 4 depicts the optimized UAV path trajectories whenbetween the three UAVS [8]. In Fig. 6 we see that the UAVs
scan based sensors only are used and the threats are deemeghtually attain an angular separation of approximately 6
to pose no risk. Wheiinax = O the optimized trajectories on the hard constraint.

The optimized trajectories for AOA/scan based hybrid

closer formation as UAVs get close to the emitter. Increassensors is demonstrated in Fig. 7 for two risk levels associ-
ing Bmax to 20 not only reduces the initial baseline expan-ated with the threats. Because the optimal angular separati
sion, but also leads to faster convergence to the emitter bgf 120° is common to both AOA and scan based localiza-
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Figure 6: Optimized UAV paths (AOA sensors only) with Figure 7: Optimized UAV paths (AOA/scan based sensors)
soft constraints fofimax = 10. (a)ky = ko =1 and (b)ky =  with soft constraints fofinax = 10. (@)k1 = K2 = 1 and (b)
Ko =5. K1 =Ko =b.
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