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ABSTRACT
In emitter localization by unmanned aerial vehicles (UAVs)
the objective of path planning is to determine the best UAV
trajectories so as to maximize the instantaneous localization
performance subject to various constraints. In this paper
we propose gradient based waypoint update algorithms for
UAVs equipped with angle-of-arrival (AOA) and scan based
sensors. The optimization criterion used by the waypoint up-
date algorithms is to maximize the determinant of the ap-
proximate Fisher information matrix. The effectiveness of
the path planning algorithms is illustrated with several com-
puter simulations.

1. INTRODUCTION

The objective of passive emitter localization is to determine
the location of an emitter by processing the emitter signals
received by several sensors or a moving sensor platform. Pas-
sive emitter localization finds application in mobile commu-
nications, wireless sensor networks and electronic warfare,
to name but a few. The receiving platforms may employ sen-
sors capable of measuring angle of arrival (AOA), time of
arrival (TOA), time difference of arrival (TDOA), scan time,
Doppler shift or received signal strength. Hybrid localization
techniques combining some of these measurements are also
available.

In this paper we consider optimal path planning for a par-
ticular type of receiving platform, namely unmanned aerial
vehicles (UAVs) equipped with AOA and scan based sensors.
The AOA localization has a rich history (see e.g. [1]). The
key idea is to triangulate multiple bearing lines emanating
from UAVs. The scan based localization exploits the geomet-
ric relationship between the emitter location and scan time
measurements based on the assumption of constant beam ro-
tation speed [2]. It is also related to rotating directionalbea-
con techniques [3], [4] and landmark based robot localization
techniques [5].

The approach adopted in this paper is to optimize UAV
trajectories by locally maximizing the determinant of the ap-
proximate Fisher information matrix [6] each time a way-
point update is to be computed. This is equivalent to min-
imizing the estimation uncertainty. The Fisher information
matrix is approximated by replacing the true emitter loca-
tion with its maximum likelihood estimate [7]. The paper is
organized as follows. Sections 2 and 3 provide an outline
of the AOA and scan-based emitter localization problems.
Section 4 discusses a hybrid localization technique involving
both AOA and scan based sensors. Section 5 presents the hy-
brid maximum likelihood estimator for emitter location. In
Section 6 the Fisher information matrix for scan-based lo-
calization is derived. Gradient-based UAV trajectory opti-
mization techniques are developed in Section 7. Simulation

y 

x 0 

Observer 
trajectory 

p 

rk 

Emitter θ
k 

Observer  

0 

Figure 1: Two-dimensional bearings-only emitter localiza-
tion from a single moving platform.

results are presented in Section 8. The paper concludes in
Section 9.

2. AOA LOCALIZATION

The two-dimensional passive emitter localization problem
using AOA measurements is depicted in Fig. 1 wherep is the
location of a stationary emitter, andθk andrk are the bearing
angle and the sensor location, respectively, at time instant
k. The relationship between the bearing angle, sensor loca-
tion and emitter location is given by the following nonlinear
equation:

θk = tan−1 ∆yk

∆xk
, k = 1, . . . ,N (1)

where∆yk = py− ry,k and∆xk = px− rx,k. Herep= [px, py]
T

is the emitter location vector andrk = [rx,k, ry,k]
T is the sensor

location at time instantk.
The objective of emitter localization is to estimate the

emitter locationp from a sequence of bearing measurements
over the interval 1≤ k≤N. In practice, the bearing measure-
ments are corrupted by an additive noise, i.e.,

θ̃k = θk +nk (2)

where theθ̃k, k= 1, . . . ,N, are the bearing measurements and
nk is the bearing noise. We assume thatnk is zero-mean i.i.d.
Gaussian with varianceσ2

n . The bearing noise variance can
vary withk.

3. SCAN BASED LOCALIZATION

The scan-based emitter localization algorithm [2] is an effec-
tive method for localizing scanning emitters such as a radar
with a rotating beam. It exploits the constant scan rate of the
radar antenna beam in order to derive geometric constraints
on the emitter location. Fig. 2 depicts a scanning emitter in

©2007 EURASIP 1935

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



α12 

Emitter 
p 

Receiver 
p1 

Receiver 
p2 

Range 
difference 

Figure 2: The subtended angleα12 depends on scan rateω
and TOI of the emitter beam at two receivers.

two-dimensional plane with scan rate (angular velocity) of
ω rad/s and two receivers at locationsp1 andp2 intercepting
the emitter beam. Assuming prior knowledge ofω, the angle
α12 subtended by the chord between the two receivers can be
readily obtained from time of intercept (TOI) measurements
of the emitter beamt1 andt2 at receiversp1 and p2, respec-
tively,

α12 = ω|t2− t1|. (3)

The subtended angle is constrained to lie in the interval[0,π]
by ensuring that the emitter beam is intercepted during the
shorter sweep time between the two receivers. The TOI mea-
surements correspond to the peak location of the mainlobe
of the emitter beam. Equation (3) ignores the additional
time delay due to the range difference between the receivers
(‖p− p1‖2−‖p− p2‖2)/c where‖ · ‖2 denotes the Euclid-
ean norm andc is the speed of propagation for the emitter
signal which is assumed to bec = 3×105 km/s. In practice
this time difference is negligible compared with|t2− t1| and
is therefore ignored in the following development. Givenα12
and the receiver locationsp1 and p2, the loci of all possible
emitter locations form a circular arc with centre pointc12 and
radiusr12:

c±12 =
p1 + p2

2
+R±π/2

12
p2− p1

2tanα12
, r12 =

‖p2− p1‖2

2sinα12
(4)

whereR±π/2
12 is the±90◦ rotation matrix

R±π/2
12 =

[

0 ∓1
±1 0

]

. (5)

This follows from a circle property that all angles subtended
by a given chord are the same as long as they are on the same
side of the chord (i.e., they remain either acute or obtuse).
Only one of the circle centresc±12 corresponds to the true
emitter location. The true circle centre can be determined
from additional information such as angle of arrival or direc-
tion of beam rotation. We will denote the true circle centre
by c12.

4. AOA/SCAN BASED HYBRID LOCALIZATION

In hybrid localization UAVs are equipped with a heteroge-
nous mix of sensors, thereby making a variety of sensor mea-
surements available for localization purposes. In this pa-
per AOA/scan based hybrid localization is considered. In
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Figure 3: Hybrid localization with three UAVs. All three
UAVs have scan time sensors and UAV3 has an additional
AOA sensor.

AOA/scan based hybrid localization not all UAVs are re-
quired to have both AOA and scan based sensors. Some
UAVs may only have one of these sensors. The use of hybrid
sensors with an increased number of measurements in gen-
eral leads to an improved overall localization performance.
Fig. 3 depicts a geolocation scenario where all three UAVs
have scan time sensors and UAV3 has an additional AOA
sensor.

5. MAXIMUM LIKELIHOOD ESTIMATOR FOR
HYBRID LOCALIZATION

AOA and scan time measurements can be modelled as
Gaussian processes with joint conditional pdfs (likelihood
functions) fAOA(θ |p) and fSB(α|p), respectively, whereθ
andα are AOA and subtended angle measurement vectors.
The value ofp that maximizes the likelihood function is the
maximum likelihood estimate (MLE) of the emitter location:

p̂AOA = argmax
p

fAOA(θ |p) p̂SB = argmax
p

fSB(α|p) (6)

The maximization of log-likelihood (natural logarithm
of likelihood function) reduces MLE to a nonlinear least-
squares (NLS) problem:

p̂AOA = argmax
p

eT
AOA(p)Σ−1

AOAeAOA(p) eAOA(p) = θ −θ(p)

p̂SB = argmax
p

eT
SB(p)Σ−1

SBeSB(p) eSB(p) = α −α(p)

whereΣ is the covariance matrix of the relevant sensor noise,
andθ(p) andα(p) are exact AOA and subtended angles for
an emitter atp. We note that the covariance matrix is depen-
dent on the emitter range due to the link between the noise
variance and SNR [7].

A hybrid MLE is easily formulated by augmenting the
error vectors and corresponding covariance matrices in an
appropriate manner. For example, if every UAV had AOA
andscan based sensors, then the hybrid MLE combining all
measurements would be given by

p̂H =

[

eAOA(p)
eSB(p)

]T [

ΣAOA 0
0 ΣSB

]−1[

eAOA(p)
eSB(p)

]

. (7)
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For different sensor combinations the above hybrid estimator
can be easily modified by removing relevant entries of the
error vectors and the corresponding rows and columns of the
covariance matrices.

6. FISHER INFORMATION MATRIX

The Cramer-Rao lower bound (CRLB) gives the smallest co-
variance matrix achievable by any unbiased estimator:

CRLB = Φ−1(p) (8)

whereΦ(p) is the Fisher information matrix (FIM)

Φ(p) = E

{

(

∂
∂ p

ln f (z|p)

)(

∂
∂ p

ln f (z|p)

)T
}

. (9)

Here f (z|p) is the log-likelihood function. LetJo denote the
Jacobian evaluated at the true emitter locationp. FIM can
then be expressed as

Φ(p) = JT
o Σ−1Jo (10)

where Σ is the covariance matrix of the single-sensor or
hybrid-sensor measurement noise.

7. GRADIENT BASED WAYPOINT UPDATE
ALGORITHMS

For an efficient estimator the area of 1-σ error ellipse (39.4%
confidence region)A1σ is inversely proportional to the deter-
minant of FIM:

A1σ =
π

|Φ(p)|1/2
. (11)

The path planning optimization criterion adopted in the paper
is to minimizeA1σ by adjusting the UAV waypoints. This is
equivalent tomaximizing the determinant of FIM. We note
that the maximization of the determinant of FIM leads to the
minimization of the localization uncertainty.

Let s(k) be the 6×1 vector containing three UAV loca-
tions at an integer time indexk:

s(k) =

[

p1(k)
p2(k)
p3(k)

]

. (12)

The gradient descent algorithm

s(k+1) = s(k)+M(k)
∂JT(s(k))

∂s(k)
, k = 0,1, . . . (13)

produces waypoints for the UAVs by locally maximizing the
determinant of an approximate FIM:

JT(s(k)) = |Φ(p̂(k))| (14)

where p̂(k) is MLE of the emitter location at timek. The
step-size matrixM(k) normalizes the waypoints so as to gen-
erate equal displacements for each UAV. This avoids UAVs
closer to the emitter getting more favourable treatment and
larger waypoints than other UAVs that are farther away from
the emitter and also ensures constant velocity cruising forall
UAVs. The gradient of the cost function in (13) can be nu-
merically approximated by first-order finite differences [7].

The local optimization achieved by (13) is not always
desirable especially if it leads to significantly long cruising
times for UAVs. By compromising the initial performance a
little one can achieve faster convergence on the emitter. To
achieve this we introduce a “force” parameterβ :

JM(s(k)) =
JT(s(k))

∑3
i=1‖pi(k)− p̂(k)‖β . (15)

The smallerβ the better the initial localization performance,
and the largerβ the faster the UAVs get to the emitter. The
parameterβ can be increased withk to improve overall per-
formance. Forβ = 0, JM andJT are essentially identical.

In electronic warfare applications the UAVs may need
to avoid certain geometric locations because of perceived
threat. In optimized path planning soft constraints can be
imposed on certain threat locations with a specified risk. The
larger the risk associated with a threat the larger the desired
UAV clearance will be. Circular soft constraints can be in-
cluded in the cost functionJM(s(k)) as

Jc(s(k)) = JM(s(k))
NT

∏
i=1

3

∏
j=1

(

1−e−‖p j (k)−ci‖/κi

)

(16)

whereNT is the number of threats, theci are the threat loca-
tions, and theκi > 0 are the threat intensities (risk associated
with each threat). In (16) the multiplicative factors introduce
global unstable minima at threat locations.

A certain minimum distance between the UAVs and the
emitter must be maintained in order to maintain reception of
the emitter signal due to vertical radar beamwidth. A hard
constraint can be imposed on the geometry to realize this
minimum clearance requirement. If theith UAV reaches a
distancedmin from the emitter, the hard constraint projects it
onto a circle of radiusdmin centred at the estimated emitter
location:

pi(k+1) = dmin
pi(k+1)− p̂(k)

‖pi(k+1)− p̂(k)‖
+ p̂(k). (17)

When all UAVs reach the hard constraint, they eventually
attain the optimal angular separation minimizing MSE.

8. SIMULATIONS

Several simulations have been carried out to demonstrate the
performance of the optimized path planning algorithms using
three UAVs equipped with AOA and scan based sensors. The
standard deviation of AOA sensors is 2.5◦ at a 50-km emitter
range. The standard deviation of scan based measurements
is 10 ms at 50 km. The UAVs cruise at a constant speed
of 30 m/s. The emitters to be geolocated are at[0,0]T and
[−10,50]T km (no prior knowledge of the emitter locations
is available to the UAVs). Time separation between waypoint
updates is 30 s. The parameterβ is increased linearly from
0 to βmax during the geolocation mission for each emitter.
The emitter scan rate isω = π rad/s. The minimum allowed
distance from the emitter isdmin = 5 km. The initial UAV
locations arep1(0) = [−45,25]T km, p2(0) = [−42,30]T km
and p3(0) = [−44,33]T km. There are two threats atc1 =
[−19,18]T km andc2 = [−25,2]T km.
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Figure 4: Optimized UAV paths when only scan time sensors
are used and threats are ignored. (a)βmax= 0, (b)βmax= 20,
and (c) the corresponding MSE plots for the first emitter.

Fig. 4 depicts the optimized UAV path trajectories when
scan based sensors only are used and the threats are deemed
to pose no risk. Whenβmax = 0 the optimized trajectories
exhibit strong baseline expansion initially and then form a
closer formation as UAVs get close to the emitter. Increas-
ing βmax to 20 not only reduces the initial baseline expan-
sion, but also leads to faster convergence to the emitter by

approximately 20 waypoints, which is equal to 10 min (see
Fig. 4(c)).

−50 −40 −30 −20 −10 0 10 20

0

10

20

30

40

50

x−axis (km)

y−
ax

is
 (

km
)

UAV Trajectories

UAV1
UAV2
UAV3
Emitters
Threats

(a)

−50 −40 −30 −20 −10 0 10 20

0

10

20

30

40

50

x−axis (km)

y−
ax

is
 (

km
)

UAV Trajectories

UAV1
UAV2
UAV3
Emitters
Threats

(b)

Figure 5: Optimized UAV paths (scan time sensors only)
with soft constraints forβmax = 10. (a)κ1 = κ2 = 1 and (b)
κ1 = κ2 = 5.

The impact of soft constraints on the optimized trajecto-
ries for scan based sensors is shown in Fig. 5 forβmax = 10.
In Fig. 5(a) both threats have a risk of 1 (κ1 = κ2 = 1)
whereas in Fig. 5(b) the risk of the threats is 5 (κ1 = κ2 = 5).
The clearance of the threats by the UAVs is increased with
largerκi .

The optimized trajectories for AOA sensors is shown in
Fig. 6 forβmax= 10. The threats have identical risks of 1 and
5 in Figs. 6(a) and 6(b), respectively. Note that the optimized
trajectories for scan based and AOA sensors are markedly
different. While for scan based localization the optimal an-
gular separation between the three UAVs is 120◦ when they
are equidistant from the emitter, the AOA localization is op-
timized if either 60◦ or 120◦ angular separation is achieved
between the three UAVs [8]. In Fig. 6 we see that the UAVs
eventually attain an angular separation of approximately 60◦

on the hard constraint.
The optimized trajectories for AOA/scan based hybrid

sensors is demonstrated in Fig. 7 for two risk levels associ-
ated with the threats. Because the optimal angular separation
of 120◦ is common to both AOA and scan based localiza-
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Figure 6: Optimized UAV paths (AOA sensors only) with
soft constraints forβmax = 10. (a)κ1 = κ2 = 1 and (b)κ1 =
κ2 = 5.

tion the final angular separation between the UAVs is roughly
120◦.

9. CONCLUSION

This paper has presented optimal path planning algorithms
for a triplet of UAVs equipped with AOA and scan based
sensors. The use of different mixes of sensors results in
markedly different optimized UAV paths. This emphasizes
the need to account for different sensor characteristics. The
proposed algorithms handle this requirement transparently
without any human intervention to fine-tune the waypoint up-
dates and, as an added bonus, do not necessitate prior knowl-
edge of the emitter location.
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