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ABSTRACT
This paper addresses the problem of classifying digital linear mod-
ulations transmitted through an unknown �nite memory channel.
Hidden Markov Models (HMMs) are used to model the received
communication signals. In a classi�cation purpose, our main in-
terest is to determine the posterior probabilities of these received
signals conditionally to each class. This paper proposes to use the
Baum-Welch algorithm to compute these probabilities which are
then plugged into the optimal Bayes decision rule. The perfor-
mance of the proposed classi�er is assessed through several simu-
lation results.

1. INTRODUCTION
Digital modulation classi�cation consists of identifying the type of
a modulated signal corrupted by noise and other impairments. It is
required in many communication applications including coopera-
tive and non-cooperative scenarios [1]. In a non-cooperative sce-
nario, the classi�cation of digitally modulated signals propagating
through an intersymbol interference (ISI) environment has been
studied by many researchers [2, 3, 4]. However, it still presents
a great deal of issues. Indeed, without some kind of ISI mitiga-
tion, the performance of current classi�cation techniques designed
for additive white Gaussian noise (AWGN) channels degrades sig-
ni�cantly. The Bayes-based classi�ers [5, 6] suffer from high
computational complexity in the presence of an unknown chan-
nel because averaging over the data symbols leads to an exponen-
tial computational cost. Moreover, Bayes-based classi�ers assume
the knowledge of noise variance when calculating the conditional
class densities. A practical suboptimal Bayes classi�er based on a
�plug-in� rule was derived in [4]. The main idea of the proposed
classi�er was to estimate the channel coef�cients as well as the
other unknown model parameters by using Markov Chain Monte
Carlo (MCMC) methods. The estimated parameters were then
plugged into the posterior probabilities. The classical maximum a
posteriori (MAP) classi�cation rule was �nally implemented with
these estimated probabilities. Unfortunately, the complexity of the
plug-in MCMC classi�er could be prohibitive for some practical
applications.

This paper studies a new digital modulation classi�er based on
HMMs. The classi�er estimates HMM posterior probabilities as
well as model parameters by using the forward/backward Baum-
Welch (BW) algorithm [7]. The estimated posterior probabilities
are then used for classi�cation via the usual MAP rule. Here,
we are interested in classifying linear modulation types transmit-
ted through an unknown �nite memory channel and corrupted by

AWGN. As a result, our main goal is to determine the posterior
probabilities that the received communication signal corresponds
to modulation types belonging to a known dictionary. However,
channel coef�cient estimates can also be obtained as side results.

The proposed classi�er will be compared with the Per-
Survivor Processing (PSP) technique introduced in [2]. This tech-
nique estimates the data sequence and the unknown parameters of
a communication signal, and classi�es this communication signal
by using the generalized likelihood ratio test (GLRT). It tackles the
problem by using the PSP to estimate the channel coef�cients and
the data sequence in order to calculate the test statistic. Note that
the classi�cation thresholds of this method have to be determined
empirically. Also, PSP requires good initialization. Another prac-
tical approach which might be used for comparison is based on
constant modulus and alphabet-matched algorithms followed by
cumulant-based classi�ers [3]. However, this technique relies on
the performance of blind equalizers which usually operate at high
SNRs. Furthermore, the decision after the cumulant-based classi-
�er requires one to measure the erratic behavior of the cumulant
estimates, which could be dubious and complicated.

This paper is organized as follows: Section 2 presents the sig-
nal model used for modulation classi�cation. The received signal
is then be modeled as a probabilistic function of an hidden state
represented by a �rst order HMM. Section 3 recalls the main steps
of the BW algorithm which determines the probability of the ob-
servation sequence given the model and estimates the unknown
model parameters. Section 4 studies the new �plug-in� modula-
tion classi�er rule based on the BW algorithm. Simulation results
and conclusions are reported in Section 5 and 6, respectively.

2. SIGNAL MODEL AND PROBLEM FORMULATION
Our assumptions regarding the operating communication system
and the signal model are similar to [1]. After preprocessing, the
baseband complex envelope of the received signal sampled at one
sample per symbol at the output of a matched �lter can be written

x(n) = ∑q
l=0 hld(n− l)+ z(n), n = 1,2, ...,L,

= hsT (n)+ z(n)
(1)

where
• L is the number of symbols in the observation interval,
• d(n) ∈ {d1,d2, ...,dM} is an independent and identically dis-

tributed (i.i.d.) symbol sequence of M-values drawn from one
of C constellations denoted {λ1,λ2, ...,λC},
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• s(n) = [d(n),d(n−1), ...,d(n−q)]T ,
• h = [h0,h1, ...,hq]T is a vector containing the q+1 taps of the

linear �nite impulse response (FIR) channel,
• q is the channel memory,
• z(1), ...,z(L) is an i.i.d. complex Gaussian noise sequence

which has zero-mean and variance σ2 (z(n) and d(n) are also
supposed to be independent).
The received signal x(n) can be modeled as a probabilistic

function of an hidden state at time n which is represented by a
�rst order HMM with the following characteristics:
1) The state of the HMM at the nth time instant is s(n). Thus, s(n)
takes its values in {s1,s2, ...,sN} of size N = Mq+1, where s j is the
jth possible value of s(n).
2) The state transition probability distribution is

ai j = P[s(n+1) = s j|s(n) = si], (2)
which equals 1/M when all symbols are equally likely.
3) The initial state distribution vector π = (π1, ...,πN)T ] is de�ned
by πi = P[s(1) = si] = 1/N.

The probability density function (pdf) of the observation x(n)
conditioned on state j, denoted as p j(x(n)) , p(x(n)|s j) can be
written

p j(x(n)) =
1

σ
√

2π
exp

(
−|x(n)−m j|2

2σ2

)
, (3)

for j = 1, ...,N, where m j = ∑q
l=0 hld j(n− l). We denote as

m = [m1, ...,mN ]T the vector containing all means. Our objective is
to recognize the type of linear modulated constellation transmitted
though a �nite memory channel corrupted by AWGN without any
knowledge regarding m j and the noise variance σ2. Given a se-
quence of observation x = [x(1), ...,x(L)]T , the proposed strategy
calculates the posterior probability of the observation sequence
given each possible model λ denoted as P(x|m,σ2,λ ). The obser-
vation vector is then assigned to the most likely class, according to
the MAP rule:

λ̂MAP = argmax
λ

P(x|m,σ2,λ ), (4)

where λ̂MAP is the estimated constellation and λ ∈ {λ1, ...,λC}.
However, the calculation of the posterior probability P(x|m,σ2,λ )
given m j and σ2 requires high complexity in the order of 2LNL

computations. Moreover, the two parameters m j and σ2 are not
available in general. This paper proposes to compute the posterior
probability P(x|m,σ2,λ ) by using the BW algorithm involving a
complexity in the order of N2L operations.

3. THE BW ALGORITHM
The BW algorithm is based on a forward-backward procedure
which estimates iteratively the unknown model parameters maxi-
mizing the posterior probability of the unknown parameters. After
convergence, the BW algorithm provides MAP estimates of m and
σ2 such that:

(m̂, σ̂2) = argmax
m,σ 2

P(m,σ2|x,λ ). (5)

The algorithm needs a forward operation to compute P(m,σ2|x,λ )
whereas a forward/backward algorithm is necessary to estimate the
unknown parameters m j and σ2. This section brie�y recalls the
principles of the standard BW algorithm. An LMS-type update
BW algorithm is also discussed.

3.1. The Standard BW Algorithm
The standard BW algorithm [7] estimates P(x|m,σ ,λ ) by using
the following three step procedure iteratively:
1) Compute the normalized forward variable αi(n)

• Initialization:

αi(1) = πi pi(x(1)), 1≤ i≤ N (6)

• Induction:

α j(n+1) = c(n)p j(x(n+1))
N
∑
i=1

αi(n)ai j, (7)

for n = 1,2, ...,L − 1, j = 1, ...,N, and where c(n) =(
∑N

i=1 αi(n)
)−1,

2) Compute the normalized backward variable βi(n)

• Initialization:

βi(L) = c(L), 1≤ i≤ N (8)

• Induction:

βi(n) = c(n)
N
∑
j=1

ai p j(x(n+1))β j(n+1), (9)

for n = L−1, ...,1 and i = 1, ...,N.
3) Estimate the model parameters as follows

m̂i =
∑L

n=1 γi(n)x(n)

∑L
n=1 γi(n)

, (10)

σ̂2 =
1
L

L
∑
n=1

N
∑
i=1

γi(n)|mi− x(n)|2, (11)

where γi(n) = αi(n)βi(n).
In a batch mode implementation, steps 1 to 3 are carried out it-

eratively with updated values of p j(x(n)) until convergence. Thus,
the desired posterior probability given the model is computed as
follows

P̂(x|m,σ ,λ ) =
∑N

i=1 αi(L)

∑L
i=1 c(i)

. (12)

Different modi�cations have been applied to the standard BW al-
gorithm to improve estimation/classi�cation performance or re-
duce computation complexity. These modi�cations are presented
in Section 3.3.

3.2. Regularization
For a linear channel, we have the relationship m = ShT , where S
is the state matrix de�ned as S = [s1,s2, ...,sN ]. This information
has been used to regularize the estimated mean values. For this,
at each iteration, the estimated means are projected into the space
spanned by the columns of S [8]:

m← SS]m (13)

where S] is the pseudo-inverse of S and �h = S]M.
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3.3. The LMS-type Update Algorithm
The standard Baum-Welch algorithm suffers from the �curse of
dimensionality� because the computation complexity and memory
requirement are proportional to the square of the number of the
states. Furthermore the convergence rate is rather slow. Thus, it is
worth seeking improvements in terms of memory and computation
speed. In this paper, we have implemented the LMS-update type
algorithm initially presented in [8]:

mi(n) = mi(n−1)+ µmγi(n)ei(n), (14)

σ2(n) = (1−µs)σ2(n−1)+ µs

(
N
∑
i=1

γi(n)|ei(n)|2
)

, (15)

where ei(n) = x(n)−mi(n−1) for i = 1, ...,N.
The initialization and time-induction calculation for the for-

ward variable can be computed as in the standard BW algorithm.
The calculation of backward variable can be obtained by using the
�xed-lag or sawtooth-lag schemes [9]. In this work, we have im-
plemented on the �xed-lag case where ∆ > q + 1 and apply for
each n the normalized backward recursion from n + ∆ to n. How-
ever, for the normalized backward recursion from n + ∆ to n, the
calculation of the normalized forward variable from n to n + ∆ is
required for the �xed-lag ∆. This means that the calculation can be
started as soon as the observation symbols are greater than 2+∆.

4. CLASSIFICATION RULE
This section studies the following classi�cation rule

Assign x to λi if P̂(x|λi)≥ P̂(x|λ j),∀ j = 1, ...,C, (16)

where P̂(x|λi) , P̂(x|m,σ ,λi) is obtained from (12). Note that
the whole sequence (of length L) is required to estimate P̂(x|λi
even if online LMS-update type algorithm has been used for the
the computation of mi(n) and σ2(n). Note also that the obser-
vation length L required to properly identify the modulation con-
stellations should be greater than the maximum number of states
Nmax = Mq+1

λc
(i.e. L > Nmax) so that every possible state can be

reached by the algorithm.
The performance of the proposed classi�er will be evaluated

by using the average probability of correct classi�cation Pcc de-
�ned by

Pcc =
1
C

C
∑
i=1

P [assigning x to λi|x ∈ λi] ,

where C is the number of possible modulations.

5. SIMULATION RESULTS
Many simulations have been carried out to evaluate the perfor-
mance of the proposed classi�er. All constellations have been nor-
malized (unit energy). The signal-to-noise ratio (SNR) in decibels
is de�ned as

SNR = 10log10

( |h|2
σ2

)
.

Since the iterative BW algorithm may converge to a local maxi-
mum of the likelihood function, one important issue is parameter
initialization. The impulse response of the unknown channel can
be estimated by using higher-order statistics (HOS) of the received
signal. According to [10], the impulse response of a qth-order

moving average (MA) system can be calculated from the estimated
fourth-order cumulants of its output as

ĥ(k) =
ĉ4,x(q,0,k)
ĉ4,x(q,0,0)

, k = 0, ...,q, (17)

where ĉ4,x(t1, t2, t3) is an estimate of

c4,x(t1, t2, t3) = cum(x∗(t),x(t + t1),x(t + t2),x∗(t + t3))

with
cum(w,x,y,z) = E(wxyz)−E(wx)E(yz)

−E(wy)E(xz)−E(wz)E(xy).
This procedure generally yields good estimations at reasonably
high operating SNRs.

5.1. Parameter estimation
This section studies the convergence and tracking characteristics
of the LMS-type update algorithms. A 4QAM signal is transmit-
ted through a linear channel whose complex impulse response is
h = [1,0.75 +0.25 j]T . The output of the �ltered sequence is then
contaminated by an additive complex white Gaussian noise with
variance σ2 = 0.01. The initial values and the step-sizes of the
LMS-type update algorithm have been adjusted as follows:

µm = 0.6,µs = 0.1,σ2
init = 1,∆ = 5.

Figures 1 and 2 display typical estimates for the real and imaginary
parts of h1 and the variance σ2 for a single run. Figure 3 shows
the average MSE versus SNR for the estimated real and imaginary
parts of h1. Of course, better performance can be achieved for high
SNRs, as expected.
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Fig. 1. Estimated real and imaginary part of h1.

5.2. Classi�cation performance
This section studies the performance of the plug-in MAP classi�er
de�ned in (16). All simulations have been obtained from 1000
trials belonging to each class λi (i.e. a total of 4000 signals for the
four-class problem, and 2000 signals for the two-class problem).
For our experiments, the mean vector m was initialized randomly
or by (17) whereas the initial noise variance was set to σ2

init = 1.
The step-size for the LMS algorithm was set to µs = 0.1 and ∆ = 5
for the �xed-lag scheme.
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5.2.1. 2-class problem
Consider a set of two modulation formats λ = {16PSK,16QAM}.
This particular example is interesting because the two modulation
formats 16PSK and 16QAM have the same number of states and
are dif�cult to distinguish in the presence of ISI and noise. Figure 4
shows the average probability of correct classi�cation versus SNR
for this problem. Note that two different initializations of the chan-
nel coef�cients have been considered, namely HOS initialization
using (17) and random initialization. Of course, the performance
improves when the HOS initialization is used. Figure 5 displays
the average probability of correct classi�cation versus the number
of observations for different SNRs. This allows one to adjust the
number of observations required to achieve a given classi�cation
performance. For instance, at SNR = 9dB, the observation length
should satisfy L ≥ 500 to ensure Pcc ≥ 0.9. When operating at
lower SNRs, larger values of L are necessary to ensure Pcc ≥ 0.9.

For comparison, we consider a two-tap FIR channel with im-
pulse response h = [0.707,0.707]T studied in [2]. The frequency
response characteristics of this channel is compared to that of
h = [1,0.75 + 0.25 j]T in Fig. 6. This �gure shows that this new
channel exhibits a severe ISI due to its strong attenuation in the
modulation passband. Figure 7 compares the performance of the
MAP classi�er (16) and the PSP/GLRT classi�er as a function of
the observation length. The proposed classi�er provides better per-
formance for 300 < L < 900. Note that the two classi�ers achieve
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Fig. 5. Average probability of correct classi�cation versus obser-
vation length.

the same performance for SNR = 9dB and L > 900.

5.2.2. 4-class problem
This section considers a set of four modulations which have been
studied in [4],[3], i.e., λ = {BPSK,4QAM,8PSK,16QAM}. It is
required to adjust the value of the LMS step-size parameter µm
for each constellation. The values of µm used in this paper have
been obtained by minimizing the average MSE of the estimated
parameters. The following results have been obtained: µm = 0.3
for BPSK, µm = 0.6 for 4QAM, µm = 10 for 8PSK, and µm = 20
for 16QAM. The average probabilities of correct classi�cation ob-
tained with the classi�er (16) for random and HOS initializations
are displayed in Fig. 8. This results shows the necessity of having
a good channel initialization. The probabilities of correct classi-
�cation of each candidate modulation type are plotted in Fig. 9.
This �gure indicates that 4QAM and 16QAM are more dif�cult to
classify than BPSK and 8PSK for the same SNR.

6. CONCLUSIONS
This paper addressed the problem of classifying digital modula-
tions in the presence of a �nite memory unknown channel. The
received communication signal was classi�ed according to a plug-
in MAP rule. This rule required to estimate the posterior distri-
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bution of the received communication signal conditionally to each
modulation belonging to a known dictionary. This estimation was
conducted by using the Baum Welch algorithm for Hidden Markov
Models which has shown interesting properties for speech recog-
nition. The performance of the proposed classi�er was assessed
by means of several simulation results. It is important to note that
the proposed classi�er in unsensitive to phase offsets. The impact
of frequency offset on the classi�cation performance should be in-
vestigated.
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