
FAST ALGORITHM FOR IMAGE DATABASE INDEXING BASED ON LATTICE

Mahmoud Mejdoub(1)(2), Leonardo Fonteles(2), Chokri BenAmar(1) and Marc Antonini(2)

(1)REGIM: Research Group on Intelligent Machines
Engineering National school of Sfax (ENIS), BP W, 3038 Sfax, Tunisia.

email: Chokri.BenAmar@enis.rnu.tn
(2)I3S laboratory

UMR 6070 University of Nice-Sophia Antipolis, CNRS, France
email: mejdoub, fonteles, am@i3s.unice.fr

ABSTRACT
Extracting feature vectors from images has been largely inves-

tigated in the literature. In contrast, browsing the image databases
has not been as much studied. We propose a new efficient method
for indexing a large amount of feature vectors in high dimensional
space. For that purpose, we introduce a new organization of the
feature vectors based on the lattice vector quantization and index-
ing.

1. INTRODUCTION

Along with the rapid development of multimedia devices and the
internet, the amount of images has been dramatically increased in
the past decade. Content-Based Image Retrieval (CBIR) [1] has
mainly focused on using primitive features such as color, texture,
shape, etc., for describing and comparing visual contents. But, the
growth of the number of images in the database and the dimension-
ality of the computed feature vectors are the two major handicaps
to provide efficient access to the images of the database. Therefore
it is essential to use appropriate indexing techniques to search in the
high dimensional feature space. Indexing techniques such as Kd-
tree [2], R-trees [3], SS-trees [4] are used to realize fast search in
the high dimensional feature space. These structures perform better
than the scan sequential algorithm (SSA) but they are still dependent
of both the feature vectors dimensions and the number of images in
the database. In this paper we present a new method for speeding up
the retrieval in the feature vectors space. The basic principle is as
follows: feature vectors are quantized and indexed in a Zn lattice.
Fast retrieval is achieved by using the good properties of the lattice.

The paper is organized as follows. In section 2, we describe
some indexing techniques from the literature to organize the feature
vectors. In section 3, we present the adapted method to extract a
fuzzy descriptor based on the combination of different wavelet ba-
sis. In Section 4 we describe the algorithm used to index a given
feature vector. In section 5, we propose our browsing method to
speed up the image retrieval process. In Section 6 we present some
simulation results. We finally conclude in section 7.

2. RELATED WORKS

In many applications, indexing high-dimensional data has be-
come increasingly important. In image databases, for example,
the images are usually mapped to feature vectors in some high-
dimensional space and queries are processed against a database of
those feature vectors. The simplest method to realize similarity
search is the sequential scan algorithm (SSA). Every feature vector
in the database is scanned to find if it satisfies the query requirement.
So, SSA depends on the number of images in the database and on
the dimensions of the feature vectors. There are a lot of methods
to organize the feature vectors of images in the database such that a
ranked list of nearest neighbors can be retrieved without performing
an exhaustive comparison with all the database image feature vec-
tors. The state-of-the-art works done on indexing high-dimensional
vectors focused mainly on two different approaches.

The first approach is based on a number of statistical algorithms
such as principal component analysis [5], and latent semantic anal-
ysis [6]. These techniques are based on the observation that fea-
ture vectors in high-dimensional space are highly correlated and
clustered. These methods of feature space reduction try to iden-
tify patterns in the feature space by expressing them in such a way
to highlight differences and similarities that exist between feature
vectors. Once these patterns are found the data can be compressed
reducing the number of dimensionality. The major inconvenience
of these approaches is that in many cases we will have the risk of
loss of the pertinent information in the feature space resulting from
the reduction of the dimensionality. The second approach is based
on a number of index structures such as Kd-tree [2], R-trees [3] and
SS-trees [4]. Unfortunately, currently available index structures for
spatial data do not adequately support an effective indexing of more
than five dimensions. The query performance of these structures de-
grades rapidly when the dimension of the feature vectors increases.
In [7] the authors report that the query performances degrades by a
factor of 12 as the dimensionality increases from 5 to 10. The ma-
jor problem of the indexing structures based methods is the overlap
of the bounding boxes that cover the space of the multidimensional
vectors with the query window, which increases with the dimen-
sions.

3. FEATURE VECTOR EXTRACTION

3.1 Low level feature extraction
In this section, we present the method used to extract the feature
vectors. We use the wavelet transform to extract the color informa-
tion. We firstly decompose the image to its individual color com-
ponents RGB. The commonly used RGB color values do not cor-
respond to human perception of color and hence are not preferred
for problems like content retrieval. So we convert the images to the
CIE-Lab space. Then, we use a set of orthogonal and biorthogonal
discrete wavelets to transform each color component of the image in
the spatio-frequency domain which is more representative than the
spatial domain. We apply for that a wavelet transform with l = 5
levels of decomposition on each component of the CIE-Lab color
space. We compute the standard deviation of the coefficients of the
five low frequency bands obtained by the decomposition. Then, we
extract from each decomposition level a feature vector containing
a single coefficient. This greatly reduces the computational com-
plexity of search through large databases since we obtain a 3 ∗ l
dimensional feature vector from each color space component. Here
we obtain a 15 dimensional feature vector which reflects the low
frequency information describing the color image properties.

3.2 Fuzzy descriptor extraction
In a first stage, we extract the feature vector of each image in the
database using the low level visual descriptor presented in Sec-
tion 3.1, and group the feature vectors in a feature matrix M. The
size of this matrix is m by n where n is the number of coordinates of
each feature vector and m is the number of images in the database.

©2007 EURASIP 1799

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

We use the fuzzy c-means (FCM) [8] algorithm to partition each
feature vector in the matrix M in Ncluster (the number of clusters).
Then, we compute the membership matrix Uw which contains the
degree of membership of the feature vector of each image in each
cluster. Degrees between 0 and 1 indicate that the feature vector has
partial membership in a cluster. The matrix Uw given by (1) is of
size Ncluster by m:

Uw = {Uw(j,k),1 6 j 6 m,1 6 k 6 Ncluster} (1)

where the coefficient Uw(j,k) assigned to the row j and the column
k of Uw indicates the degree of membership of the jth image in the
kth cluster. The parameter Ncluster determines the dimensionality of
the feature space Uw. Since, we use in our experiments, as described
later in Section 6, an image database formed by 8 categories, we set
Ncluster to 8. The advantage of the proposed approach is the re-
duction of the feature space dimensionality since we obtain a fuzzy
feature with Ncluster coefficients instead of 15 obtained using the
low level visual descriptor.

After that, for each jth image stored in the database, we extract
what we call the fuzzy visual image descriptor which corresponds
to the jth row of Uw .

3.3 Combining different wavelet basis
We propose to use in this work three different wavelets basis (the
Daubechies4, the orthogonal Beta [9, 10] and the 9-7 filters [11]).
We obtain for each wavelet basis, a fuzzy visual image descriptor
Uw extracted as described in section 3.2. We combine the obtained
matrices {Uw,1 6 w 6 wnumber} in one fuzzy descriptor Fw given
by (2); with wnumber equal to 3, i.e., the number of wavelets basis
we used.

Fw = [U1,U2,U3] (2)

The advantage of this approach is that the obtained coefficients
that form the fuzzy visual descriptor are more meaningful and re-
lated to the image comprehension than that of the low level visual
descriptor. They can then be easily combined because they have the
same meaning: they reflect the degree of membership of an image
into 8 categories of the image database. Besides, the proposed ap-
proach takes into consideration the relationship between images in
the entire database in contrary of the low level visual descriptor that
are computed only for an image independently of the other images
in the database.

4. INDEXING FEATURE VECTORS

Once the feature vectors are extracted, they must be indexed in such
a way that a fast and efficient retrieval in the database is guaran-
teed. For that purpose, we quantize each feature vector using a
lattice vector quantizer (LVQ) and assign the index of the lattice
vector to the corresponding feature vector. We propose to use the
Zn lattice in order to guarantee a fast navigation over the points in
the n-dimensional space and allow a fast correspondence between a
lattice vector and its index. More details are given hereinafter.

4.1 Lattice vector indexing
A lattice Λ inRn is composed of all integral combination of a set of
linearly independent vectors ai (the basis of the lattice) such that:

Λ = {x|x = u1a1 +u2a2 + ...unan} (3)

where the ui are integers. The partition of the space is hence regular
and depends only on the chosen basis vectors ai ∈ Rm (m > n).
Note that each set of basis vectors define a different lattice. Such a
regular structure permits to identify the nearest vectors in the space
using fast algorithms. In the case of image retrieval, since similar
images have the smallest euclidian distance between their feature
vectors, the use of a lattice should permit to retrieve the most similar
images in an efficient way.

The LVQ is an efficient algorithm for finding the closest lattice
vector x of a query feature vector v. In the case of a Zn lattice, the
closest lattice vector with a precision γ is given by:

x =
[
v

γ

]
(4)

where [.] stands for the ‘round’ operator, and γ is a scaling factor.
As we will see in Sections 5 and 6 the choice of the scaling fac-
tor must be such that a good compromise between efficiency and
computational complexity (speed) is achieved.

Once the feature vectors are quantized into lattice vectors
x, we may attribute a unique and decodable index for each x.
Feature vectors are obtained by the FCM algorithm and thus their
coordinates are always positive numbers located in the first octant
(as well as their quantized coordinates in the lattice). The proposed
indexing method computes an index by classifying the lattice
vectors according to their norm and the geometrical properties
of the lattice. Actually, taking into account the properties of the
feature vectors, an index is composed by a set of indices: an index
for the norm (IN), an index for the leader (IL), and finally an index
for the permutation (Ip). Let us detail each of these indices in the
following:

• The index for the norm (IN) is given by the l1 norm
‖x‖1 = ∑n

i=1 |xi| = ∑n
i=1 xi (since the coordinates are positive

numbers) of the lattice vector x. It classifies the different lattice
vectors x in different hyper-pyramids (shells);

• The lattice vectors lying on the same shell with index IN are
subdivided to a few number of vectors, called leaders. The
leaders are vectors from which all the other lattice vectors of the
corresponding shell can be generated by permutations and sign
changes of its coordinates (here, there is no sign changes since
all the coordinates are positives). The Section 4.2 explains in
details how the leader indices IL are computed;

• The index for the permutation (IP) is computed by the Schalk-
wijk algorithm as in [12].

This indexing method creates an hierarchical tree-structure of in-
dices adapted to the database indexing framework (see Section 6).

4.2 Proposed leader indexing
The proposed algorithm classifies all the leader indices in such a
way that the indexing is no longer based on a greedy search algo-
rithm or direct addressing, but on low-cost enumeration algorithm
which just depends on the quantity of leaders instead of on the ex-
plicit knowledge of all of them.

A hyper-pyramid of radius r and dimension n is composed by
all the vectors v such that ‖v‖1 = r. As said before, leaders are
the elementary vectors of a hyper-surface from which operations of
permutations and sign changes lead to all the other vectors lying
on this hyper-surface. Indeed, the leaders are vectors with positive
coordinates sorted in increasing (or decreasing) order. Therefore,
leaders for l1 norm are vectors which verify the conditions below:

1.
n

∑
i=1

vi = r;

2. 06vi6v j , for all i < j.

In the case of a l1 norm, one can note that those conditions are
linked to the theory of partitions in number theory [13]. Indeed, in
number theory a partition of a positive integer r is a way of writing
r as a sum of d positive integers (also called part). The number of
partitions of r is given by the partition function p(r) such that:

∞

∑
r=0

p(r)yr =
∞

∏
d=1

(
1

1− yd

)
, (5)

©2007 EURASIP 1800

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

which corresponds to the reciprocal of the Euler’s function [13].
Further mathematical development lead to representations of the
p(r) function that allow faster computation. Interested readers
should refer to [13].

However, we are usually interested in shells of l1 norm equals
to r in a d-dimensional lattice with r 6=d. In this case, one can use
the function q(r,d) [13] which computes the number of partitions
of r with at most d parts (in partition theory it is equivalent to the
number of partitions of r with no element greater than d with any
number of parts). Then, for a hyper-pyramid of norm r = 5 and
dimension d = 3, we have q(5,3) = 5, i.e., five leaders given by:
(0,0,5), (0,1,4), (0,2,3), (1,1,3),and (1,2,2).

The function q(r,d) can be computed from the recurrence rela-
tion1 [13]:

q(r,d) = q(r,d−1)+q(r−d,d), (6)

with q(r,d) = p(r) for d>r, q(1,d) = 1 and q(r,0) = 0.

4.2.1 Using function q(r,d) to index the leaders

As we will see in the following, Equation (6) not only gives the total
number of leaders lying on a given hyper-pyramid but can also be
used to provide unique indices for these leaders. To illustrate the
principle of the proposed algorithm, let us suppose that the leaders
of a given hyper-pyramid have been classified in a lexicographical
order as:

Index value Leader
0 (0, ...,0,0,rn)
1 (0, ...,0,1,rn−1)
2 (0, ...,0,2,rn−2)
3 (0, ...,1,1,rn−2)
...

...

In this way, the index of a leader L corresponds to the num-
ber of leaders that appear before it. For example, the leader
(0, ...,1,1,rn−2) should be assigned to index 3.

Consider a leader L = (x1,x2, ...,xn−1,xn) of dimension n and
norm rn = ∑n

i=1 xi. Since the leaders are sorted in a lexicographical
order, all the leaders with the largest coordinate gn verifying xn +
16gn6rn appear before L . The number of leaders with largest
coordinate equal to xn +t (t>1) and norm rn can be easily calculated
using the function q of Equation (6) and is given by q(rn − (xn +
t),n−1). Clearly, computing the number of leaders with the largest
coordinate equal to xn + t, with norm r = rn and dimension d = n,is
equivalent to calculate the number of leaders of norm rn− (xn + t)
with dimension n−1.

By introducing the function q(r,d,k) given in Appendix, which
counts all the partitions of a number r with at most d parts not
greater than k, we can show that the index of a leader can be com-
puted using the following formula:

IL =
n−2

∑
j=0

while xn−(j+1) 6=0

min[xn−(j−1),rn− j]

∑
i=xn− j+1

q(rn− j− i,n− (j +1), i), (7)

with xn+1 = +∞ and q(0,d) = q(0,d,k) = 1. Note that, when
rn− j − i is less than or equal to i, q(rn− j − i,n− (j + 1), i) =
q(rn− j − i,n− (j + 1)), because in that case all vectors counted by
q(r,n) are leaders.

5. PROPOSED METHOD

5.1 Principle of the method
Lattice vector quantization based on Zn divide the data space into
hypercubes. The centroid of each hypercube is a lattice point. Each
feature vector of the feature space Fw obtained as explained in Sec-
tion 3.3 is quantized in a lattice point. The query procedure is given
as follows:

1There also exist closed forms for q(r,d) for the first few values of d.

1. The query feature vector is computed;
2. The query feature vector is quantized in a lattice point;
3. We exploit the good properties of the lattice space to determine

the nearest lattice points of the quantized query feature vector;
4. We collect the images of the database quantized by the nearest

lattice points;
5. We perform SSA on the feature vectors of the collected images.

All these steps are described in the following sections.

5.2 Building the search tree

The obtained feature space Fw computed as explained in Section 3.3
is quantized using a scaling factor γ:

Gw =
[

Fw

γ

]
(8)

where [.] stands for the ‘round’ operator. Then, each quantized fea-
ture vector is indexed with the indices of norm, leader and permuta-
tion as explained in Section 4. The search tree is built as presented
in Figure 1. It has four levels. In the first three levels, each level con-
tains a certain number of hash tables. Each hash table has a given
number of buckets, each bucket contains one key and one node. In
the fourth level, each leaf node contains a list of images indexed in
the same lattice point. In the root of the tree, we construct the hash
table Hroot associated to the index of norm IN . If two images have
the same IN they are associated to the same bucket in Hroot . The
key in each bucket of Hroot is the index of norm of the quantized
feature vectors of the images existing in the database. The child of
the node that exists in the bucket of Hroot containing the key IN , is
the hash table ChildIN . The keys of each bucket of ChildIN are the
indices of leaders IL of the quantized feature vectors of the images
existing in the database that have the same index of norm IN . The
child of the node that exists in the bucket of ChildIN containing the
key IL , is the hash table Child(IN ,IL). The keys of Child(IN ,IL) are
the indices of permutation IP of the quantized feature vectors of the
images existing in the database that have the same IN and the same
IL . The child of the node that exists in the bucket of Child(IN ,IL)
containing the key IP, is a leaf node Lea f(IN ,IL ,IP) containing the
list of images existing in the database that have the same indices of
norm, leader and permutation corresponding respectively to IN , IL
and IP. For example, in Figure 1, the keys of the Hash table Child9
are the indices of leader of images in the database having the same
index of norm 9. The keys of Child(9,5) are the indices of permuta-
tion of images in the database having the same indices of norm and
leader corresponding respectively to (9,5). The images located in
the leaf node Lea f(9,5,6) are image1 and image3.

image indices(norm,leader,permutation)
image1 (9,5,6)
image2 (10,1,2)
image3 (9,5,6)
image4 (9,1,3)
image5 (9,1,2)

Table 1: The indices of norm, leader and permutation of each im-
ages presented in the search tree of Figure 1.

5.3 Retrieving the k nearest images

We implemented an image retrieval system with the Java language
using Apache Tomcat server. The system allows the user to bring
the query image in existing pictures from the hard disk, the web or
drawings constructed on any other drawing tools.

Let us first define the nearest neighbor lattice vectors x of the

©2007 EURASIP 1801

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

9 10

5 1 1

2 3 26

image1 image5 image4 image2image3

Hroot

Child9

Child(9,5)

Leaf(9,5,6)

Figure 1: Example of the tree for the images given in Table 1.

origin lattice vector (the null vector 0) as2:

maskp =

{
x ∈ Λ,∑

i
x2

i = p, p ∈P ⊂N
}

(9)

which defines the lattice vectors at the square distance p from the
origin. For example, as showed in Figure 2 for a lattice Z2, the
neighbors at a square distance p = 4 from the origin of the lattice
are given by mask4 =

{(0
−2

)
,
(−2

0
)
,
(0

2
)
,
(2

0
)}

. They correspond to
the third neighborhood of the null vector 0.

The proposed basic procedure to retrieve the k nearest images
of query image is given by the following steps:
1. A combined fuzzy color feature vector is extracted from the

query image and quantized by the lattice vector vquery;
2. Retrieve in the database all the images quantized by the lattice

vector vquery as described in Section 5.4;
3. If the number k1 of images in the database quantized by vquery

is at least equal to k, then go to step 6 else go to step 4;
4. The set E of lattice vectors corresponding to the neighbors of

vquery up to a maximum square distance P is defined by:

E = [E1,E2, ...,Ep,,EP] for p ∈P (10)

with,
Ep = {v ∈Λ,v = vquery +x,x ∈maskp}; (11)

5. Retrieve the k2 database images quantized by vectors of E (sat-
isfying k1 + k2 ≥ k). This step is described in Section 5.4;

6. Performs the SSA on the k1 or k1 + k2 database images and re-
turn the k nearest images to the query vector;

7. Exit.

5.4 Retrieving the database images
To retrieve the images quantized by the same lattice vector v, we
proceed as follows. We compute the index of norm IN of the quan-
tized feature vector v. We search IN in the root hash table Hroot .
If it does not exist, we exit the search process without returning
any images. If IN exists, we compute the leader index IL of v and
we search IL in ChildIN . If IL does not exist, we exit the search
process without returning any images. If IL exists, we compute
the permutation index IP of v and we search IP in Child(IN ,IL). If
it does not exist, we exit the search process without returning any
images. If IP exists, we take from the leaf node Child(IN ,IL ,IP) the
images indexed by the same indices of norm, leader and permuta-
tion (IN ,IL ,IP) as the quantized feature vector v.

2This operation is done off-line.

vquery

p = 1

p = 2

p = 4

Figure 2: The lattice points located at the neighborhood of vquery in
Z2 .

5.5 Advantages of the proposed method
One advantage of the proposed retrieval method is that it is adapted
to image databases that have an important number of images. In-
deed, if we increase the number of images in the database, we ob-
tain a lattice space more dense, consequently more useful for in-
dexing. Besides, to search the images quantized in a given lattice
point located at the neighborhood of vquery, we search at most only
in three levels of the tree independently of the dimension of the fea-
ture space. Indeed, we parse the all three levels only if there are
images in the database that are quantized in this given lattice point.
Another advantage is that the speed up can be improved selecting
the optimal scaling factor. If it is small then the source is expanded
and the lattice will be less dense. Then, for retrieving a certain num-
ber of images the retrieval engine has to parse an important number
of nearest lattice points and the speed up cost will be more impor-
tant. If the scaling factor is great the source is contracted, the lattice
will be very dense so the retrieval window increases but the speed
up is degraded because we must perform SSA on a large number
of images. So we have a trade off between the number of images
in which the SSA is applied and the number of the browsed lattice
points located at the neighborhood of vquery. To realize this trade
off our solution consists on varying the scaling factor and selecting
experimentally the optimal scaling factor.

6. SIMULATION RESULTS AND DISCUSSION

We conducted our tests on a subset of the COREL [14] database,
formed by 8 image categories (Horses, Flowers, Buildings, Buses,
Dinosaurs, Elephants, Mountains and glaciers, Lights) each con-
taining 100 images. The images are translated scaled and rotate to
obtain an image database containing 40000 images. Experiments
were performed on a personal computer with configurations: In-
tel Pentium M 725 (1.6 GHZ), 512 MB memory DDR 333 MHz,
80 GB HDD. We have tested the performance of our proposed im-
age retrieval method taking into account both the classical precision
measures (the ratio between the number of images returned belong-
ing to the same category as the query and the number of images
required by the user) and the speed-up of the retrieval process. The
dimension of the feature vectors that we used in our experiments
is equal to 24, since we have combined three feature vectors each
one extracted from a different wavelet basis (Daubechies4, Beta and
9 7 filters). We have used three different scaling factors (1/2, 1/3
and 1/4) and three different ranks (8, 60 and 200). The rank is
the number of images required by the user. We define the speed-up
parameter as:

speed-up = t(SSA)/t(indexing) (12)

where t(SSA) is the elapsed time for SSA method and t(indexing)
is elapsed time for the Kd-tree or the proposed retrieval method.
Note that all feature vectors as well as the built trees of the pro-
posed method and Kd-tree should be resident in the main memory
when evaluating t(SSA) and t(indexing). So the speed-up is mainly
dependant on computational complexity, i.e. CPU cost. We have
found experimentally that for the scaling factors (1/2, 1/3 and 1/4),

©2007 EURASIP 1802

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

we obtain best performances than the Kd-tree in terms of time spent
on the retrieval process for all used k (number of nearest neighbors
to be retrieved) (see Tables 2 and 3). We present in Table 2 a com-
parison between the retrieval speed-up of the retrieval method based
on lattice using the scaling factor 1/3 and the kd-tree.

k Kd-tree Lattice
8 18,64 96,996
60 12,1589 66,03

200 8,375 29,538

Table 2: Speed-up comparison between the proposed indexing
method and the Kd-tree.

As described in the Section 5.3, the proposed method contains
two major parts. The first consists on browsing the lattice points
located at the neighborhood of vquery. The second consists in ap-
plying the SSA on the images returned by the first part. Let us
call nb(nearest) the number of the browsed lattice points located at
the neighborhood of vquery and nb(SSA) the number of images in
which we perform the SSA. The experiments that we made show
that the best performances of our retrieval method are obtained for
the scaling factor 1/3. We can explain this, as shown in Table 3,
by the fact that the increasing of nb(SSA) is more responsible of the
growth of the time spent on the retrieval process, than the increasing
of nb(nearest), i.e. , the proposed retrieval method consumes more
time in its second part than in its first part. So, for the scaling fac-
tor 1/3, we obtain the best trade-off between the number of images
nb(SSA) and nb(nearest).

k γ nb(nearest) nb(SSA) Speed-up
Lattice

8
1/2
1/3
1/4

1.4086 647.5952
4.167 297.6662

27.0292 172.2377

43,3495
96,996

94,3

60
1/2
1/3
1/4

7.5092 687.8592
112.4876 340.4619
658.8768 220.3109

40,9647
66,03

32,736

200
1/2
1/3
1/4

60.7492 820.6161
891.182 465.7423

3329.5112 329.5532

27,2889
29,538
8,7658

Table 3: The trade-off between nb(SSA) and nb(nearest) for the
scaling factors γ (1/2, 1/3 and 1/4), and the respective speed-up.

For the scaling factor 1/3, we compared also the precision of
the retrieval between our indexing method and the Kd-tree.We ob-
serve in Table 4 that the results given by our methods outperform
those given by the Kd-tree.

k 8 30 60 100
Kd-tree 0,938 0,84063 0,81021 0,75938
Lattice 0,938 0,8669 0,82063 0,7728

Table 4: Comparison of the precision between the proposed index-
ing method and the Kd-tree.

7. CONCLUSION

In this paper, we have proposed a new method for indexing a large
amounts of feature vectors exploiting the good properties of the al-
gebraic lattice Zn. The proposed method performs better than the
Kd-tree in both the speed-up and the precision of the retrieval pro-
cess. Future works will be oriented to extract feature vectors from
the most pertinent object in the images.

Appendix

Given the number r, the number of parts d and the largest part k,
q(r,d,k) is computed by the following algorithm:

q = 0r+1,k+1; // Null Matrix of size(r +1)×(k +1)
q(0,0) = 1;
For i f rom 0 to d do

For j f rom 1 to k do
For z f rom r to i by −1 do

I f z > j
then
q(z, j) = q(z, j−1)+q(z− j, j);
else
q(z, j) = q(z, j−1);

EndI f
EndFor

EndFor
EndFor
q(r,d,k) = q(r,k);
return q(r,d,k);

REFERENCES

[1] J. Smith and S. Chang, “Visualseek: A fully automated
content-based image query system,” Proceedings of ACM
Multimedia’96, pp. 87–98, November 1996.

[2] J. Bentley, “Multidimensional binary search trees in database
applications,” IEEE Transactions on Software Engineering,
pp. 333–340, December 1979.

[3] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” SIGMOD Conference, pp. 47–57, December 1984.

[4] D. White and R. Jain, “Similarity indexing with the ss-tree,”
Proceedings of the 12th International Conference on Data En-
gineering, pp. 516–523, February 1996.

[5] L. Tran and R. Lenz, “Pca-based representation of color dis-
tributions for color-based image retrieval,” International Con-
ference in Image Processing (ICIP’01), pp. 697–700, October
2001.

[6] S. Deerwester, S. Dumais, and R. Harshman, “Indexing by la-
tent semantic analysis,” Journal of the American Society for
Information Science, vol. 41, no. 6, pp. 391–407, October
1990.

[7] X. Xiangyang, L. Hangzai, and W. Lide, “Index point data
using algebraic lattice,” Proceedings of SPIE, Storage and Re-
trieval for Media Databases, vol. 3972, no. 22, pp. 271–281,
December 1999.

[8] X. Xie and G. Beni, “A validity measure for fuzzy cluster-
ing,” EEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 13, no. 8, pp. 841–847.

[9] W. Bellil, C. B. Amar, and M. Alimi, “Beta wavelet based im-
age compression,” International Conference on Signal, System
and Design, SSD03, vol. 1, pp. 77–82, 2003.

[10] C. B. Amar, M. Zaied, and M. A. Alimi, “Beta wavelets. syn-
thesis and application to lossy image compression,” Advances
in Engineering Software, Elsevier edition, vol. 36, no. 7, pp.
459–474, july 2005.

[11] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Im-
age coding using wavelet transform,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 1, no. 22, pp. 205–
220, april 1992.

[12] J. Moureaux, P. Loyer, and M. Antonini, “Low complexity in-
dexing method for Zn and Dn lattice quantizers,” IEEE Trans.
Commun., vol. 46, no. 12, pp. 1602–1609, december 1998.

[13] G. E. Andrews, “The theory of partitions,” Cambridge Univer-
sity Press; Reprint edition (July 28, 1998), 1998.

[14] J. Wang, J. Li, and G. Wiederhold, “Simplicity: Semantics-
sensitive integrated matching for picture libraries,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 32,
no. 9, pp. 947–963, 2001.

©2007 EURASIP 1803

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

