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ABSTRACT
In this paper, we present two models for supervised scalar image
segmentation based on the active contours and information theory.
First we propose to carry out a region competition by optimizing
an energy designed to be minimal when the entropy of the inside
and outside regions of the evolving active contour are close to those
of a reference image. The probability density functions (pdfs) used
by this model can be computed in a preprocessing step on a ref-
erence image. This substantially reduces the computational com-
plexity making this model fast. On the other hand, this implies that
the reference image and the image to segment have similar pdfs.
When the pdfs are too different or both images are not from the
same modality we propose a second segmentation model compu-
tationally more expensive but more robust to intensity differences.
This second model is based on an information measure extensively
used for image registration, the joint entropy. The performance of
both models is demonstrated on a variety of 2D synthetic data and
medical images. They are also compared in term of segmentation
accuracy and computational cost with an entropy-based unsuper-
vised segmentation model recently proposed.

1. INTRODUCTION

Segmentation methods aim to partition an image into a finite num-
ber of semantically important regions. This finds a wide range of
potential applications in image or video analysis including image
or video coding, tracking, object recognition, statistical studies or
augmented reality. The segmentation models we propose in this
paper have been developed in the active contour framework. This
technique consists in finding the curve that minimizes an energy
functional designed to be minimal when the curve has reached the
object contours.

The first generation of active contour segmentation methods has
been based on edge detection [4, 8]. As the evolution of boundary-
based segmentation methods depends on local image gradients, they
are very sensitive to noise, fuzzy contours or texture edges. To cope
with this problem, more robust models using global information
about the regions to segment have been proposed. This informa-
tion is given by a statistical region descriptor. Probably the most
well-known region-based model is the 2-phase method based on the
mean descriptor presented by Chan and Vese in [11]. Other descrip-
tors have been proposed such the variance [10, 16] or the probability
density function (pdf) [12, 15, 17, 19]. For the time being, pdf looks
to be the most promising feature to describe a region. Region-based
segmentation can be supervised or unsupervised. The segmentation
is unsupervised when the region descriptor is only extracted from
the image to segment. When the region descriptor is based on a
feature of reference, the model is supervised.

This work concerns supervised segmentation models based on
pdfs. So far, two main approaches have been presented. The first,
presented by Paragios et al in [12], proposes to include in a seg-
mentation model, prior knowledge about the desired intensity prop-
erties of the different regions to detect, by minimizing an energy

derived from an a posteriori density function. This density func-
tion defines the probability that a given pixel belongs to a particular
region knowing its intensity value. In [15], Jehan-Besson et al. pro-
pose a different approach that consists in minimizing the ”distance”
between the pdfs of regions selected in the image to segment and
pdfs of references. They propose to measure this ”distance” with
the Kullback-Leibler divergence measure, the Hellinger distance or
the chi-2 function comparison function. In this paper, we inves-
tigate another important information theoretical measures, the en-
tropy and the joint-entropy, to carry out a two-phase segmentation
of scalar images in a supervised way.

The remainder of this paper is organized as follow. In section
2.1, we present the two unsupervised models that Herbulot et al.
[17, 19] have proposed for unsupervised segmentation of scalar and
vectorial images (color images or motion vector fields). These mod-
els are the main source of inspiration for this work. In section 2.2,
we show how we adapt these models to perform the segmentation
of scalar images based on a reference image. We will see that one
of these models used in a supervised way leads to the minimization
of energy that has a very close form to the one proposed by Para-
gios. In section 3, we compare on a variety of 2D synthetic and
medical images the performance of the two supervised models we
propose with the unsupervised model for scalar image segmentation
in [17]. Finally, these three segmentation models are discussed and
conclusions are drawn in section 4.

2. METHOD

2.1 The unsupervised segmentation models of Herbulot
In [17, 19], Herbulot et al. propose to carry out the segmentation of
gray-scale and vectorial images composed of an object and a back-
ground by minimizing the entropy (H) of each region. In this con-
text, the entropy is used to measure the homogeneity of a region.

2.1.1 Segmentation of scalar images

Following the Shannon definition [1] and the non parametric ap-
proximation of Ahmad and Lin [3], the marginal entropy1 on a fixed
region Ω is computed as follow:

H(q(Ω)) =
∫

Ω
ϕ(q(I(x),Ω))dx, (1)

with

ϕ(q(I(x),Ω)) =− 1
|Ω| ln[q(I(x),Ω))], (2)

where ϕ(.) as a region descriptor, q(I(x),Ω) is the probability den-
sity functions (pdf) associated with an observation I(x) for a fixed

1The entropy was defined with the neperian logarithm because this loga-
rithm has the simplest derivative: ln(q)′→ 1

q .
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region Ω at a given moment and |Ω| is the area of Ω. In this ap-
proach, the image intensity I(x) is considered as a random variable.

The pdf of intensity of the region Ω is estimated in a non-
parametric way using the Parzen windows method [2]:

q(I,Ω) =
1
|Ω|

∫

Ω
Gσ (I− I(x̂))dx̂, (3)

where Gσ is the Gaussian kernel with 0-mean and σ2 variance.
Minimizing functional (1) involves the computation of its

derivative. By using the shape derivative tool [13, 16], the Eule-
rian derivative in the direction V of the criterion (1) corresponds
to:

< H,V >=
∫

Ω

∂ϕ(I(x),Ω,V)
∂τ

dx−
∫

∂Ω
ϕ(I(x),Ω))(V ·N )ds

(4)
where ∂ϕ(I(x),Ω,V)

∂τ is the shape derivative. The region integral con-
siders the dependence of the criterion with the region Ω and the
contour integral considers the dependence of the criterion with the
contour ∂Ω.

It is demonstrated in [17, 19] that Equation (4) can be rewrite
as the following contour integral:

< H,V >=−
∫

∂Ω
(A(I(x),Ω)+B(I(x),Ω))(V ·N )ds (5)

A(I(x),Ω) is a term coming from the dependance of the descriptor
with the region and B(I(x),Ω) is a term coming from the depen-
dance of the descriptor with the contour.

In our case,

A(I(x),Ω) =− 1
|Ω|

∫

Ω

∂ϕ(q(I(x),Ω))
∂q

[q(I(x),Ω)− (6)

Gσ (I(x)− I(x̂))]dx̂,

with
∂ϕ(q(I(x),Ω))

∂q
=− 1

|Ω|
1

q(I(x),Ω)
, (7)

and
B(I(x),Ω) = ϕ(I(x),Ω). (8)

According to the Cauchy-Schwartz inequality, the fastest way
to decrease H(q(Ω)) s.t < H,V >=

∫
∂Ω F(V ·N )ds is obtained

by choosing ∂C
∂τ =−FN which leads to the evolution equation:

∂C
∂τ

= ([A(I(x),Ω)+ϕ(I(x),Ω)]+λκ)N . (9)

where κ is the curvature of the contour C which regularizes the
evolving curve and λ is a weight.

To produce two regions with two pdfs as homogenous as possi-
ble, the functional (1) is minimized by using the region competition
approach introduced by Zhu and Yuille in [7]. Thus we look for the
regions that minimize the following energy:

EH(qin,qout) = H(q(Ωin))+H(q(Ωout))+λ
∫

∂Ω
ds (10)

where Ωin is the object region and Ωout is the background region.
qin and qout are their corresponding pdfs and

∫
∂Ω ds is the regular-

ization energy.
The energy (10) leads to the following evolution equation:

∂C
∂τ

= ([A(I(x),Ωin)+ϕ(I(x),Ωin)]+ (11)

[A(I(x),Ωout)+ϕ(I(x),Ωout)]+λκ)N .

Solving Equation (11) implies the segmentation of two homogenous
regions, which are here the object of interest and the background.
In the following of this paper, this marginal entropy-based unsuper-
vised segmentation model will be called ME.

2.1.2 Segmentation of vectorial images

For the segmentation of vectorial images, Herbulot proposes an-
other segmentation model based on the joint-entropy. The joint-
entropy of a fixed region Ω is computed as follow::

H(q(I1, I2,Ω)) =
∫

Ω
ϕ(q(I1(x), I2(x),Ω))dx (12)

with

ϕ(q(I1(x), I2(x),Ω)) =− 1
|Ω| ln[q(I1(x), I2(x),Ω))] (13)

and

q(I1(x), I2(x),Ω) =
1
|Ω|

∫

Ω
(14)

Gσ (I1(x)− I1(x̂), I2(x)− I2(x̂))dx̂,

where q(I(x1), I(x2),Ω) is the joint probability density func-
tions (pdf) associated with the observations I(x1) and I(x2) for a
fixed region Ω at a given moment. Gσ (., .) is the Gaussian kernel in
2D.

Note that the derivative of the joint-entropy functional (12) is
similar to the one of the entropy functional (1). Thus we can di-
rectly deduce the evolution equation corresponding to the joint-
entropy-based segmentation model by replacing in (11) the prob-
ability distribution q(I(x),Ω) by the joint probability distribution
q(I(x1), I(x2),Ω):

∂C
∂τ

= ([A(I1(x), I2(x),Ωin)+ϕ(I1(x), I2(x),Ωin)]+ (15)

[A(I1(x), I2(x),Ωout)+ϕ(I1(x), I2(x)),Ωout ]+λκ)N ,

where

A(I1(x), I2(x),Ω) =− 1
|Ω|

∫

Ω

∂ϕ(q(I1(x), I2(x),Ω))
∂q

· (16)

[q(I1(x), I2(x),Ω)−Gσ (I1(x)− I1(x̂), I2(x)− I2(x̂))]dx̂,

with
∂ϕ(q(I1(x), I2(x),Ω))

∂q
=− 1

q(I1(x), I2(x),Ω)
. (17)

In [17, 19], these two entropy-based models were presented to
perform unsupervised segmentation, i.e without prior knowledge on
the pdfs of the regions to segment. Their pdfs have thus to be recom-
puted at each iteration of the process to correspond to the regions
defined by the current position of the active contour.

2.2 Our supervised segmentation models

In this section, we propose to use the models presented in the pre-
vious section to include in a segmentation model prior knowledge
about the intensity distribution of the regions to detect. In this work,
these prior intensity distributions are extracted from a reference im-
age in which we know the segmentation of the object of interest.
This reference image can be either a source image globally put in
correspondence to the image to segment with an affine registration
(as in the atlas-based segmentation methods [6, 9]) or the previous
frame in a video sequence. Note that the reference image gives also
to the active contour an initial position close to the target contour. In
this supervised segmentation framework, we will call the reference
image ”atlas” and the image to segment ”target image”.
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2.2.1 Atlas-based marginal entropy model (ABME)

Let qprior be the prior pdf of a fixed region Ω extracted from the
atlas.

Inspired by the entropy definition (1), we define the following
functional energy Eqprior that aims to segment regions having en-
tropies close to the corresponding regions in the reference image:

H(qprior) =
∫

Ωin

ϕ(qprior,in(I(x)))dx+ (18)
∫

Ωout

ϕ(qprior,out(I(x)))dx,

with

ϕ(qprior(I(x)) =− 1
|Ω| ln[qprior(I(x))], (19)

where I(x) is an intensity value of the target image. Thus if the
minimization of the energy (18) leads to a perfect segmentation of
Ωin and Ωout in the target image, then qin = qprior,in and qout =
qprior,out .

As qprior is constant, the descriptor ϕ(.) does not depend on

the region Ω. Thus, shape derivative ∂ϕ(qprior(I(x))
∂τ is equal to zero.

The Eulerian derivative in the direction V of the criterion (18) cor-
responds simply to the contour integral:

< Eqprior ,V >=−
∫

∂Ωin

ϕ(qprior,in(I(x)))(V ·N )ds− (20)
∫

∂Ωout

ϕ(qprior,out(I(x),Ω))(V ·N )ds.

With the region competition and the regularization term we ob-
tain the following evolution equation:

∂C
∂τ

=−(ϕ(qprior,in(I(x)))− (21)

ϕ(qprior,out(I(x)))+λκ)N .

This segmentation model assumes that corresponding regions
between the reference and target images have similar intensity
distributions. When these distributions are too different we propose
to use the model described in section 2.2.3.

2.2.2 Related work to ABME

In [12], Paragios et al. presents an energy that has a very close
form to the entropy-based energy with prior knowledge (18). The
main difference is that they deduce their energy from the a poste-
riori density function q(P(Ω)|I(x)) describing the membership of
a pixel to a particular region following its intensity I(x). P(Ω) =
{Ωin,Ωout} represents the partition of the image domain into two
non-overlapping regions {Ωin∩Ωout = ø}.

With the Bayes rule, this density function can be rewritten as:

q(P(Ω)|I(x)) =
q(I(x)|P(Ω))

q(I(x))
q(P(Ω)). (22)

By assuming that all the partitions are a priori equally possible they
ignore the constant terms p(I(x)) and p(P(Ω)). Thus the density
function (22) becomes:

q(P(Ω)|I(x)) = q(I(x)|P(Ω)) = (23)
q(Iin(x)|P(Ωin))q(Iout(x)|P(Ωout)).

By assuming that the points within each region are independent they
obtain:

q(Iin(x)|P(Ωin)) = ∏
Ωin

qprior(I(x),Ωin) (24)

q(Iout(x)|P(Ωout)) = ∏
Ωout

qprior(I(x),Ωout)

Finally, as the maximization of an a posteriori probability is equiva-
lent with the minimization of the−log() function of this probability
they get the following functional energy:

E(qprior) =−log

[
∏
Ωin

qprior,in(I(x)) ∏
Ωout

qprior,out(I(x))

]
(25)

=−
∫

Ωin

ϕ(qprior,in(I(x)))dx−
∫

Ωout

ϕ(qprior,out(I(x),Ω))dx

In conclusion, our a priori entropy-based Energy (18) differs from
the a posteriori density function-based Energy (25) by the normal-
ization by the region area.

2.2.3 Atlas-based joint entropy model (ABJE)

In the reference work [19], I1 and I2 of the joint entropy-based seg-
mentation model (Equation 15) correspond to two channels of a
color image or the components of a 2D dense deformation field.
In the model presented here, I1 corresponds to the target image and
I2 corresponds to the atlas. To be able to compute the joint proba-
bility (14), the atlas has to be deformed to follow the evolution of
the active contour. During the segmentation process, the atlas I2 at
time t will be thus given by the dense deformation field u(x, t) and
the initial reference image I2(x,0) such that:

I2(x, t) = I2(x+u(x, t),0) (26)

u(x, t) is extracted by tracking the active contour motion. To
compute it, we use the level-set based registration method we have
previously presented in [18]. In this method, u(x, t) is extracted
from the implicit representation of the contour by the level set func-
tion φ of Osher and Sethian [5]. Let φT (x) be the level set repre-
sentation of the current active contour and φ(x,0) be the level set
representation of the initial contour. u(x, t) is obtained by solving
the following partial derivative equation (PDE):

∂u(x, t)
∂ t

=−F
5φ
|5φ | , (27)

where
F(x, t) = (φT (x)−φ(x, t)), (28)

and
φ(x, t) = φ(x+u(x, t),0), (29)

In fact, F(x, t) measures the distance between the contour repre-
sented by φ(x, t) and the target contours represented by φT (x). Note
that when the level set function is carried over by the current defor-
mation field as in (29), the property of signed distance function will
be violated as soon as the registration starts and thus causes numer-
ical inaccuracy. In order to avoid this, the level set function φ(x, t)
is re-initialized at each iteration.

Inspired by the optical flow regularization where a Gaussian
filtering Gσ is applied on the deformation field at each iteration, the
total deformation field is obtained as follows:

u(x, t +1) = (u(x, t)+
∂u(x, t)

∂ t
)∗Gσ , (30)

where ∗ is the convolution operator. This Gaussian filtering permits
to remove discontinuities that appear on the skeleton of the φ(x, t)
due to the distance map property while propagating the correction
to the whole deformation field. The Gaussian filtering necessitates
to set a parameter σ .

By including the deformation of the reference image in the
joint-based segmentation model (15), we obtain the following evo-
lution equation:

∂C
∂τ

= ([A(I1(x), I2(x+u,0),Ωin)+ϕ(I1(x), I2(x+u,0),Ωin)]

(31)

+[A(I1(x), I2(x+u,0),Ωout)+ϕ(I1(x), I2(x+u,0),Ωout)]+λκ)N .
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3. RESULTS

Figure 1 shows the segmentation results obtained on 2D synthetic
images (Rows 1, 2 and 3) and 2D medical images (Rows 4, 5 and 6)
with the two supervised models we have presented. Each image has
dimensions of 100x100 pixels and pixel dimensions are 1x1 mm2.
These results are compared with those obtained with the unsuper-
vised model for the segmentation of scalar image proposed by Her-
bulot et al. in [17]. The atlas and the target images are respectively
shown in Columns 1 and 2. Column 3 shows the result obtained
with the marginal entropy model (ME) (Equation (11)). Column
4 shows the results obtained with the atlas-based marginal entropy
model (ABME) (Equation (21)) and Column 5 shows the results ob-
tained with the atlas-based joint-entropy model (ABJE) (Equation
(31)). The initial position of the active contour is shown in green on
the atlas (Column 1). The segmentation result is shown in green on
the images of Columns 3, 4 and 5. The target contours are copied in
red onto all of these images to visualize the initial differences and
the quality of the segmentation. These target contours, considered
as ground truth, were obtained from the target image by manual
segmentation. The two values under the images of Columns 3, 4
and 5 represent respectively the number of iterations necessary to
obtain the corresponding result and the mask overlap ratio between
this automatic segmentation and the ground truth. The value of this
ratio ranges from zero to one, with zero indicating no overlap and
one indicating a perfect agreement between both masks (for more
detail about this mask similarity measure see [14]).

Concerning the results on synthetic images. Row 1 presents
synthetic images with two regions gray and black. The correspond-
ing regions between the atlas (Panel 1.1) and the target image (Panel
1.2) have same pdfs. Panels 1.1 shows that the object of interest
contains one region, the gray one. In this case, the three models
gives similar segmentation results (see Panels 1.3, 1.4 and 1.5). The
fastest one is the ABME model because it uses pdfs computed in
a preprocessing step on the atlas. Row 2 presents synthetic im-
ages containing 3 regions (white, gray and black). Again the corre-
sponding regions between the atlas (Panel 1.6) and the target image
(Panel 1.7) have same pdfs. Panel 1.6 shows that the object of in-
terest contain two regions (white and gray). In this case, the ME
model segments only the gray region (Panel 1.8). Note that the gray
region was the region the most important inside the initial contour
(Panel 1.7). The two supervised models segment the same regions
that the object of interest in the atlas (see Panels 1.9 and 1.10). Row
3 presents also synthetic images containing three regions but this
time the corresponding regions between the atlas (Panels 1.11) and
the target image Panel 1.12) have different pdfs. Note that the back-
ground of the atlas has the same pdf that the big circle in the target
image and conversely. Again, the unsupervised model segments the
region the most important inside the initial contour (Panel 1.13).
On the other hand, the ABME model segments the background and
some points of the object of interest that belongs to its pdfs of ref-
erence (Panel 1.14). In this case, only the ABJE model succeeds in
the segmentation of the object of interest (Panel 1.15).

Concerning the results on real images. Row 4 presents results
on computed tomography (CT) of the neck area. The object to seg-
ment in the target image is the jaw. The corresponding regions be-
tween the atlas (Panel 1.16) and the target image (Panel 1.17) have
similar pdfs. The best results were obtained with the supervised
segmentation models (Panels 1.19 and 1.20). The ABME model
was the most fast and the most accurate. On the other hand, the ME
model segments some homogeneous parts of the tissue surrounding
the jaw. Row 5 presents results on brain MR images. The objects
to segment in the target image are the lateral ventricles. The refer-
ence image (Panel 1.21) and the target image (Panel 1.22) beeing
of different modalities (T1 and T2) the corresponding regions have
different pdfs. This time, the ME model and the ABJE model suc-
ceed in the segmentation of the ventricles. With the ABME model,
the active contour tends to disappear as there is no intensity value
corresponding to the reference pdf of the ventricles. Row 6 presents
results on an anatomical slide. The objects to segment in the tar-

get image is the eye. The target image (Panel 1.27) by deforming
the atlas with rigid deformation and by changing its window level.
Thus it has different pdfs compare to the atlas (Panel 1.26). The best
segmentation result was obtained by the ABME model (Panel 1.30).
The ME model divides the image in two homogenous regions. Thus
the segmented object include part of the tissues surrounding the eyes
and presents holes inside the eye. The ABME model segments only
the parts of the eye with intensities corresponding to the pdf of ref-
erence.

.1 .2 .3 100/0.999 .4 40/0.996 .5 800/0.983

.6 .7 .8 200/0.928 .9 280/0.997 .10 900/0.987

.11 .12 .13 250/0.928 .14 800/0.013 .15 650/0.992

.16 .17 .18 250/0.903 .19 200/0.966 .20 400/0.925

.21 .22 .23 130/0.884 .24 150/0.120 .25 400/0.958

.26 .27 .28 150/0.962 .29 500/0.676 .30 800/0.983

Figure 1: Segmentation results. Columns: 1) Reference image. 2)
Image to segment. 3) Unsupervised marginal entropy model (ME).
4) Atlas-based marginal entropy model (ABME). 5) Atlas-based
joint-entropy model (ABJE). Rows: 1) Synthetic images: 2 regions,
same pdfs. 2) Synthetic images: 3 regions, same pdfs. 3) Synthetic
images: 3 regions, different pdfs. 4) Neck CT images: similar pdfs.
5) T1/T2 Brain MR images: different pdfs. 6) Anatomical eye im-
ages: different pdfs. Values under the images of Columns 3, 4, 5:
Number of iterations/Mask overlap measure.

4. DISCUSSION AND CONCLUSIONS

In this paper, we present two supervised models based on informa-
tion theory for the segmentation of scalar images. They permit to
segment an object in an image by using prior knowledge coming
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from a reference image or atlas. These prior knowledge are an ini-
tial position for the active contour close to the target contours and
prior pdfs concerning the two regions to detect in the target image.
The first model based on the entropy addresses the cases where the
pdfs of the objects and the background in the reference image are
similar to those to segment in the target image. The second model
uses the joint-entropy to deal with the cases when these pdfs are too
different. Both models are compared with an unsupervised entropy-
based model recently proposed by Herbulot et al in [17, 19]. Results
showed that when these pdfs are similar the supervised entropy-
based model has the lowest computational cost because the pdfs of
reference can be computed in a preprocessing step. When these
pdfs are too different the supervised joint-entropy based model is
the most robust model. On the other hand, this method is more
expensive computationally because the joint pdfs have to be com-
puted at each iterations and a second PDE have to be solve to find
the deformation field that deforms the reference image to follow the
evolution of the active contour. The unsupervised model is faster to
deal with different pdfs but the result is very sensitive to the initial
position of the contours and the object or the background to seg-
ment in the target image have to satisfy the homogeneity criterion.
A joint paper [20] illustrates the use of our entropy-based models for
an application in volumetric medical images coding. Future work
includes using this type of supervised segmentation models to drive
the non rigid registration of an atlas as described in [18, 21].
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