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ABSTRACT
This paper presents a new multi-way filtering method for
multidimensional images corrupted by white Gaussian noise.
Images are considered as multi-way arrays instead of matri-
ces or vectors, which enables to keep relations between each
index. The presented filtering method is based on multilin-
ear algebra principles and it improves the multi-way Wiener
filtering (MWF). The originality of the method relies on the
flattening directions of multi-way arrays and on a block ap-
proach to keep local characteristics of images. Experiments
on color images and hyperspectral images have been com-
puted to illustrate the improvement of MWF by the analysis
of image characteristics.

1. INTRODUCTION

In Physics, the acquisition of data is an important step to
validate theory. However, data sets are often corrupted by
noise because of acquisition process or transmission pro-
cess. Thus, the first pre-processing step to analyze data re-
lies on an efficient denoising. Although image processing
has been of major interest for years, most of studies concern
monochrome images [1]. However, in the last decade, some
researches have been focused on color images [2]. For multi-
dimensional images, usual denoising methods consider each
band as independent.

This model is poorly adapted to multidimensional image
processing because it cuts the link between each dimension
of the image. In this paper, multi-way arrays are consid-
ered as whole entities. This model has been used in several
fields such as psychology [3], chemometrics [4], face recog-
nition [5], etc. Recently, a tensor based filtering which ex-
tends bidimensional Wiener filtering to multi-way arrays has
been proposed [6].

The goal of this paper is to improve this multidimensional
Wiener filtering (MWF) by taking into account the specifici-
ties of processed data. Actually, we propose to process im-
ages which means there are two dimensions or n-modes for
the localization of a pixel and another single dimension for
the channel. In order to improve the efficiency of MWF , a
specific flattening of tensors is used, based on the estimation
of main directions in the image. These flattening directions
are obtained by the extension of the SLIDE algorithm [7, 8].
A block decomposition is also used to keep local character-
istics of images.

2. RELATED WORK

2.1 Relevant notations
We call ”tensor” of order N, a N-way array, that is, entries
are accessed via N indexes. In the whole paper, scalars will
be denoted by x, vectors by x, matrices by X, tensors by X .

Notations ⊗ and ×n denote respectively Kronecker product
and n-mode product.

Frobenius norm of a tensor A is denoted by ‖A ‖ :

‖A ‖2 = ∑
i1,...,iN

a2
i1,...,iN (1)

Each of the N indexes will either be called dimension or n-
mode.

2.2 Flattening matrices
A tensor can be turned into a n-mode matrix (figure 1).
The n-mode flattening matrix An of a tensor A ∈ RI1×...×IN

is defined as a matrix [9] from RIn×Mn where : Mn =
I1 . . . In−1In+1 . . . IN .

Figure 1: Flattening matrices for a third order tensor A .

2.3 Multiplication of a tensor by a matrix
In [9], an extension of SVD to higher order tensors has been
proposed and called HOSVD. It is defined by orthogonal co-
ordinate transformations which lead to a specific representa-
tion of a tensor. For that purpose, n-mode product has been
introduced. The n-mode product is defined as the product be-
tween a data tensor A ∈ RI1×...×IN and a matrix H ∈ RJ×In

in mode n. This n-mode product is denoted by B = A ×n H
, whose entries are given by :

bi1...in−1 jin+1...iN =
In

∑
n=1

ai1...in−1inin+1...iN h jin (2)

Equation (2) shows that n-mode product is nothing but
a generalization of matrix product. Indeed, if R is a I1× I2
matrix and H is a I2× I3 matrix, each element of the matrix
product B = A ·H ∈ RI1×I3 is given by bi j = ∑I2

k=1 aikhk j.

2.4 Multi-way Wiener filtering
In this section an overview of multidimensional Wiener filter-
ing (MWF) is given [6]. Multi-way data are considered to be
corrupted by a white Gaussian noise N . It has been shown
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that MWF is far more efficient than bidimensional Wiener
filtering, which consists in processing bands separately. This
method is based on Tucker3 decomposition [10, 3] which
considers that a tensor can be seen as a multi-mode multi-
plication :

X = G ×1 A(1)×2 . . .×N A(N), (3)

where A(n) is a In×Jn matrix and G ∈RJ1×...×JN . G is called
core tensor.

Let us define the noisy data tensor :

R = X +N , (4)

where X is the signal tensor. The multi-way filtering prin-
ciple consists in the estimation of tensor X denoted by X̂ :

X̂ = R×1 H1×2 H2×3 . . .×N HN (5)

Each matrix Hn of equation (5) is called a n-mode filter.

2.5 Expression of n-mode filters

In the case of MWF , n-mode filters are obtained through the
minimization of the mean squared error e(H1,H2, . . . ,HN) :

e(H1,H2, . . . ,HN) = E
[∥∥X −X̂

∥∥2
]
, (6)

and for fixed m-mode filters Hm, m 6= n, the expression of
optimal n-mode filter Hn is [6]:

Hn = V(n)
s Λ(n)V(n)T

s , (7)

where :

Λ(n) = diag


λ γ

1 −σ (n)2

γ

λΓ
1

, . . . ,
λ γ

Kn
−σ (n)2

γ

λΓ
Kn


 (8)

and λ γ
i and λΓ

i , ∀i = {1, . . . ,Kn}, are respectively the Kn

largest eigenvalues of matrices γ(n)
XR = E

[
XnO(n)RT

n

]
and

Γ(n)
RR = E

[
RnQ(n)RT

n

]
, with :

O(n) = H1⊗·· ·⊗Hn−1⊗Hn+1⊗·· ·⊗HN , (9)

Q(n) = O(n)T
O(n) (10)

σ (n)2

γ is estimated by computing the average of the In −Kn

smallest eigenvalues of γ(n)
RR :

σ̂ (n)2

γ =
1

In−Kn

In

∑
i=Kn+1

λ γ
i . (11)

Consequently, multi-way Wiener filtering needs the n-mode
ranks values K1,K2, . . . ,KN . They could be estimated using
Akaike Information Criterion [11].

2.6 Drawbacks
To quantify the restoration of images, the remainder of the
paper uses the following criteria :
• The signal to noise ratio (SNR), to measure noise in the

data tensor :

SNR = 10 · log
‖X ‖2

‖B‖2 (12)

• A quality criterion (QC) to quantify the estimation com-
pared to signal tensor :

QC(X̂ ) = 10 · log

(
‖X ‖2

∥∥X̂ −X
∥∥2

)
(13)

Even if MWF has been shown to improve channel-by-
channel filtering of color images corrupted by white Gaus-
sian noise [6], in some cases, the improvement is not visually
rendered. Actually, figure 2 shows that artifacts can appear.

(a) (b) (c)

Figure 2: (a) Signal tensor, (b) noisy data tensor: SNR =
9.03 dB, (c) restored tensor by MWF: QC = 15.21 dB.

There are two kinds of artifacts: a whole blur because lo-
cal characteristics of images are not taken into account dur-
ing the filtering and an undesirable effect of vertical and hor-
izontal lines. The latter comes from orthogonal projections
during the filtering process (see eq. (5)).

3. IMPROVED MULTIDIMENSIONAL WIENER
FILTERING

3.1 Rank reduction and flattening directions
Let us consider a matrix A of size I1× I1 which could rep-
resent an image of a straight line. The rank of this matrix is
closely linked to the orientation of the line: an horizontal or
a vertical line has a rank 1, else it is more than one. The limit
case is when the straight line is along a diagonal, in this case,
the rank of the matrix is I1. This is also true for tensors.

If a color image has been corrupted by a white Gaussian
noise, a truncation of the SVD to the rank of the n-mode
signal subspace leads to the reconstruction of initial signal.
In the case of a straight line along a diagonal of the image,
the signal subspace is the same as the minimum dimension
of the image. In this case, no truncation can be done without
loosing information and the image cannot be restored this
way. If the line is either horizontal or vertical, the truncation
to rank-(K1 = 1,K2 = 1,K3 = 3) leads to a good restoration.

Figure 3 illustrates that the consideration of a specific di-
rection for the analysis leads to an improved restoration.

3.2 Estimation of main directions
To estimate main directions, a classical method is the Hough
Transform [12]. In [7, 8], an analogy between straight line
detection and sensor array processing has been drawn. In this
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(a) (b) (c)

Figure 3: (a) Diagonal image , (b) Truncation to K1 = K2 =
50 and K3 = 3, (c) Truncation to K1 = K2 = 1 and K3 = 3 in
the direction 45◦.

paper, this method is used to provide main directions of an
image. The number of main directions is given by the Mini-
mum Length Description [11]. The main idea of this method
is that it is possible to generate some virtual signals out of
the image data in order to establish the analogy between lo-
calization of sources in array processing and the recognition
of straight lines in image processing. Figure 4 illustrates that
modeling.

Figure 4: (a) The image matrix provided with the coordinate
system and rectilinear array of N equidistant sensors. (b) A
straight line characterized by its angle θ and offset x0.

In the case of a noisy image containing d straight lines,
the signal measured at the lth row is [7] :

zl =
d

∑
k=1

e jµ(l−1) tanθk · e− jµx0k +nl , l = 1, . . . ,N (14)

where µ is a parameter [7], nl is the noise resulting from out-
lier pixels at the lth row. Starting from this signal, the SLIDE
method (Straight LIne DEtection) [7, 8] can be used to es-
timate the orientations θk of the d straight lines. Defining :

al(θk) = e jµ(l−1) tanθk , and sk = e− jµx0k , (15)

we obtain:

zl =
d

∑
k=1

al(θk)sk +nl ,∀l = 1, · · · ,N (16)

Thus, the N×1 vector z is defined by:

z = As+n, (17)

where z and n are N×1 vectors corresponding respectively
to received signal and noise, A is a N × d matrix and s is
the d× 1 source signal vector. This relation is the classical
equation of an array processing problem.

The SLIDE algorithm [7, 8] can be run to provide the
estimation of the angles θk :

θk = tan−1
[

1
µ∆

Im
(

ln
λk

|λk|
)]

, k = 1, . . . ,d (18)

where ∆ is the displacement between the two sub-arrays,
{λk, k = 1, . . . ,M} are the eigenvalues of a diagonal unitary
matrix that relates the measurements from the first sub-array
to the measurements resulting from the second sub-array and
”Im” stands for ”imaginary part”. Details of this algorithm
can be found in [7].

The orientations obtained enable us to flatten the data
tensor into a non-orthogonal way. This first improvement
reduces the grid artifact of the restored signal image.

3.3 Block partitioning
The second processing proposes to improve MWF is a block
approach to take care of local characteristics. For that pur-
pose, a quadtree decomposition is used to provide homoge-
neous sub-tensors. Such a block processing approach has
been used for the segmentation of hyperspectral images [13].
A quadtree decomposition is based on the recursive regu-
lar decomposition of space into blocks whose sides are of
size power of two. The quadtree decomposition starts from
a T ×T block where T is a power of two and it divides the
array into quadrants if the image is not homogeneous. Each
sub-block is then recursively processed like providing a de-
composition in which every block is homogeneous. In this
paper, the quadtree decomposition is used to improve the
restoration of details by MWF . The approach consists in
filtering separately homogeneous regions to keep local char-
acteristics. The homogeneity criterion used is the spectral
variance [14].

4. EXPERIMENTAL RESULTS

We denote by MWF the Multi-way Wiener Filtering and
by MWFR the Multi-way Wiener Filtering applied on Re-
arranged flattening matrices and sub-tensors.

4.1 Color images

(c) QC = 15.21 dB (d) QC = 16.87 dB

Figure 5: (c) MWF, (d) MWFR with SLIDE estimated angles
θR: [0◦, 20◦, 25◦, 60◦, 78◦, 90◦].

Figure 5 shows the improvement brought by the rear-
rangement of data (figure 5-(d)), compared to classical multi-
way Wiener filtering (figure 5-(c)) of noisy data tensor of fig-
ure 2-(b). Here, the analysis of the image provided six main
directions: 0◦, 20◦, 25◦, 60◦, 78◦, and 90◦.
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4.2 Hyperspectral images

(a) (b) SNR = 10.13 dB

(c) QC = 18.19 dB (d) QC = 19.59 dB

Figure 6: (a) signal tensor, (b) data tensor, (c) recovered ten-
sor by MWF and (d) recovered tensor by MWFR with SLIDE
estimated angles θR: [ 0◦, 34◦, 90◦].

Hyperspectral images can also be modeled as third order
tensors, the third mode being the spectral signature. Figure 6
gives a visual interpretation of the improvement brought by
MWFR in terms of quality criterion. Actually, the oblique
road of the image is poorly restored by MWF compared to
MWFR. This visual interpretation is closely linked with the
values of the quality criterion of both images: 18.19 dB and
19.59 dB. The analysis of the image has given three main
directions corresponding to orientations of roads.

Figure 7 presents the influence of the initial SNR on the
restoration. Note that MWFR is more effective than MWF .
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Figure 7: Comparison of MWF and MWFR on a hyperspec-
tral image.

5. CONCLUSION

In this paper, we have proposed an improved multi-way
Wiener filtering for images corrupted by white Gaussian
noise based on the analysis of image specificities. First, a re-
arrangement of flattening matrices data is performed thanks
to the estimation of main directions by the SLIDE algorithm.
Then, a block approach based on quadtree decomposition has
been introduced to keep local characteristics of data. Exper-
imental results have illustrated this improvement.
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