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ABSTRACT

The Neyman-Pearson detector can be approximated by Mul-
tiLayer Perceptrons (MLPs) trained in a supervised way to mini-
mize the Mean Square Error. The detection of a known target in a
Weibull-distributed clutter and white Gaussian noise is considered.
Because of the difficulty to obtain analytical expressions for the op-
timum detector under this environment, a suboptimum detector like
the Target Sequence Known A Priori (TSKAP) detector is taken as
reference. A study of the MLP size shows as a low complexity MLP-
based detector trained with the Levenberg-Marquardt algorithm to
minimize the MSE is able to obtain good performances. Low per-
formance improvement is achieved for greater sizes than 20 hidden
neurons. The MLP-based detector is better than the TSKAP one,
even for very low complexity MLPs (6 inputs, 5 hidden neurons and
1 output). Moreover, it is demonstrated empirically that both de-
tectors are robust with respect to changes in the target parameters
(signal to noise ratio). So, MLP-based detectors are proposed to
detect known targets in Weibull-distributed clutter plus white Gaus-
sian noise.

1. INTRODUCTION

The detection of targets in presence of clutter is the main problem
in radar detection. Many clutter models have been proposed in the
literature [1, 2, 3, 4]. But many detection schemes assume Gaussian
models for clutter, because analytical expressions can be obtained
for the detector and for its performance parameters (the probabil-
ity of detection (Pd) and the probability of false alarm (Pfa)). The
Gaussian probability density function (PDF) can be used for model-
ing atmospheric clutter, but the PDF of land and sea clutter only can
be modeled as Gaussian when the radar resolution cell or the area
illuminated by the radar, is relatively large. The log-normal distri-
bution has been proposed for very high-resolution radars and high
sea states, and for modeling land clutter from urban areas, rural ar-
eas with buildings and silos, and mountainous terrain. Due to its in-
termediate properties between the Gaussian and the log-normal, the
Weibull distribution is commonly used for modeling sea and land
clutter returns. The other interference source that is always present
in a receiver system is the thermal noise. For typical radar frequen-
cies and bandwidths it can be modeled as additive white Gaussian
noise (AWGN) [1, 2].

In [5], the optimum detector when target, clutter or both are
time-correlated and have arbitrary PDFs is studied, proving the dif-
ficulty to obtain analytical expressions for the optimum detector.
For different cases of study, different sub-optimum solutions are
proposed, that assume some conditions that are not always fulfilled
in practice.

In this paper, a neural network (NN) based detector is proposed
as a solution to the problem of detecting a target known a priori
in correlated Weibull clutter and white Gaussian noise. The sub-
optimum solution proposed in [5] for this case will be denoted as
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TSKAP (Target Sequence Known A Priori) detector and will be
taken as a reference.

The MultiLayer Perceptrons (MLPs) trained in a supervised
way to minimize the Mean Square Error (MSE) approximate the
Neyman-Pearson (NP) detector [6], which is usually used in radar
systems design. This detector maximizes the probability of detec-
tion (Pd), maintaining the probability of false alarm (Pfa) lower than
or equal to a given value [7]. MLPs have been applied to the detec-
tion of targets in different radar environments [8, 9, 10, 11].

In this way, MLPs are trained to approximate the NP detector
for known targets in coherent Weibull clutter and white Gaussian
noise. As for designing the MLPs, no assumption is made about
the target or the environment, so they are expected to outperform
the suboptimum solutions, which need to have a priori knowledge
of the environment. A study of the MLP size is carried out to ob-
tain a trade-off solution between desired performance and complex-
ity. Also, a study of robustness with respect to signal to noise ratio
(SNR) of the TSKAP and MLP-based detectors is carried out. Re-
sults show that the MLP-based detector outperforms the TSKAP
one, maintaining a high robustness level.

2. RADAR TARGET, CLUTTER AND NOISE MODELS

In the literature are commonly used synthetic models to evaluate
the performance of different radar detectors [5, 12]. This section
describes the radar target, clutter and noise models used to generate
the data for the experiments.

In this paper, it is assumed that the radar collects N pulses in a
scan, so observation vectors (z) are composed of N complex sam-
ples, which are presented to the detector. Under hypothesis H0
(target absent), z is composed of N samples of clutter and noise.
Under hypothesis H1 (target present), a known target characterized
by a fixed amplitude (A) and phase (θ ) for each of the N pulses
is summed up to the clutter and noise samples. Also, a doppler
frequency in the target model of 0.5 times the Pulse Repetition Fre-
quency (PRF) of the radar system is assumed.

The noise is modeled as a coherent white Gaussian complex
process of unity power, i.e., a power of 1

2 for the quadrature and
phase components. The clutter is modeled as a coherent correlated
complex Weibull sequence [13], so the modulus of each complex
sample is a Weibull random variable with the following PDF:

p(|w|) = ab−a|w|a−1e
−

(
|w|

b

)a

(1)

where |w| is the modulus of the coherent Weibull-distributed se-
quence and a and b are the skewness (shape of the distribution) and
scale (related to the power of the sequence) parameters of a Weibull
distribution, respectively.

The PDF of each complex sample w = u + j · v is found to be
[5]:

p(u,v) =
a

4πσ2

(
u2 + v2

) a
2−1

exp
[
− 1

2σ2

(
u2 + v2

) a
2
]
. (2)
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where σ2 is related to the power of w.
If each input vector is composed of N independent complex

Weibull random variables (rvs), its joint PDF can be calculated as
the product of the marginal PDFs. But the joint PDF of a time-
correlated sequence of N complex valued Weilbull rvs is very dif-
ficult to calculate. So in order to completely characterize the input
vector, the autocorrelation matrix must be specified.

The autocorrelation function of clutter sequences is assumed
Gaussian, and the element (h,k) of the autocorrelation matrix of a
vector of N complex Weibull rvs is given by

(Mc)h,k = Pcρ
|h−k|2
c e j(2π(h−k) fc

PRF ) (3)

where the indexes h and k varies from 1 to N, Pc is the clutter power,
ρc is the one-lag correlation coefficient of the clutter and fc is the
doppler frequency of the clutter. Without loss of generality, as de-
tection performance is a function of the difference between the tar-
get Doppler frequency and the clutter one, it has been assumed a
clutter Doppler frequency equal to zero.

The relationship between the Weibull distribution parameters
and Pc is

Pc =
2b2

a
Γ

(
2
a

)
(4)

where Γ() is the Gamma function.
In [5], a model to generate a time-correlated sequence of N

complex-valued Weibull rvs is described. It consists of the cascade
of a correlator filter and a Non-Linear MemoryLess Transformation
(NLMLT) fed by a sequence N white gausian noise complex-valued
samples. An explicit relation has been found between the ACFs of
the Gaussian and the Weibull sequences at the input and output of
the NLMLT, respectively. The correlator filter weights are chosen
to control the autocorrelation matrix, while the one-lag correlation
coefficients of the Gaussian and the Weibull sequences, that will be
denoted as ρg and ρc, respectively, are related by the expression:

ρc =
ρga

2Γ( 2
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(5)

where F(A,B;C;D) is the Gauss Hypergeometric function.
Taking in consideration that the complex noise samples are of

unity variance (power), the following power relationships are con-
sidered for the study:
• Signal to Noise Ratio:

SNR = 10 · log10

(
A2

)
[dB]. (6)

• Clutter to Noise Ratio:

CNR = 10 · log10 (Pc) [dB]. (7)

3. OPTIMUM AND SUBOPTIMUM NP DETECTORS

The problem of optimum radar detection of targets in clutter when
the target and clutter are time-correlated and have arbitrary PDFs
was explored in [5]. The optimum detector scheme consists of two
channels. The upper channel is matched to the condition that the se-
quence to be detected is the sum of the target plus clutter and noise
(hypothesis H1), while the lower one is matched to the detection
of clutter and noise (hypothesis H0). It was built around two non-
linear estimators of the disturbances in both hypothesis, which min-
imize the MSE. Making the difference between the two estimated
disturbances with the actual radar echo, two residuals are obtained.
The non-linear estimators are designed to obtain a zero-mean white
Gaussian sequence through the channel corresponding to the true
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Figure 1: TSKAP Detector

hypothesis. A suboptimun solution is shown in fig. 1 for the prob-
lem of detecting known targets. It will be denoted as TSKAP, and
will be taken as referente in this work.

As the target is known, it can be subtracted at the input of the
channel matched to H1 and added at its output, so the estimation of
the disturbance in this channel can be performed as in the channel
H0. The estimations are denoted as r[k] for each channel. The non-
linear estimators (NLPFs, Non-Linear Prediction Filters) are imple-
mented as the cascade of a NLMLT inverse, a linear prediction filter
(LPF) and a NLMLT. If the CNR is very high (CNR>> 0dB), the
NLMLT inverse is assumed to transform the Weibull-distributed se-
quence, o[k], in a Gaussian one, p[k], for the corresponding channel.
Then the LPF can be designed to estimate the transformed distur-
bance, q[k], for each channel. Finally, the NLMLT provides the
estimated disturbance in the Weibull domain, r[k], for each channel.

When the two estimated disturbances are subtracted from the
actual radar echo, the detection problem is reduced to the classical
case of Gaussian signals in Gaussian noise.

Besides being suboptimum, this scheme presents two important
drawbacks:
1. The prediction filters have N−1 memory cells that must contain

the suitable information to predict correct values for the N sam-
ples of each input signal. So N +(N− 1) pulses are necessary
to correctly decide whether the target is present or not.

2. The target sequence must be subtracted from the input of the H1
channel, i.e., it must be known a priori, what it is not easy to
achieve in real cases.
Clutter parameters can be estimated from the environment but,

in practice, target parameters are unknown and difficult to estimate.
Because of that, a study of the robustness of the TSKAP detector
with respect to target parameters is carried out in this paper. As
a first approach, the robustness with respect to SNR is considered.
The SNR value assumed for obtaining the sequence s[k] to be sub-
tracted and added in channel H1 attending to expression (6) will
be denoted as the design SNR (DSNR) while the SNR of the input
patterns, z[k], will be denoted as the simulation SNR (SSNR).

4. MLP-BASED DETECTOR

As MLPs have been proved to approximate the NP detector when
minimizing the MSE [6], a detector based on a MLP is proposed.
As no assumption is made about the hypothesis, the MLP-based
detector is expected to outperform the TSKAP proposed in [5].

In this way, MLPs are trained to minimize the MSE using the
Levenberg-Marquardt algorithm with adaptive parameters [14, 15].
This algorithm based on the Newton method is designed specifically
for minimizing the MSE. For MLPs which have up to few hundred
of weights (W ), the Levenberg-Marquardt algorithm is more effi-
cient than the Back-Propagation algorithm [16] with variable learn-
ing rate or the conjugate gradient algorithms. Moreover, it is able to
converge in many cases when the other algorithms failed [15].

In order to avoid overfitting, cross-validation is used during the
training. In this context, the target and interference parameters are
fixed for generating the training and validation sets (the training pa-
rameters) and play the same role as the design ones for the TSKAP
detector. Moreover, a new set (test set) of patterns is generated to
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test the trained MLP for estimating the Pfa and Pd using Montecarlo
simulation. As in the TSKAP detector, the parameters assumed to
generate this new set are called the simulation ones. In a first ap-
proach, all the signals/patterns of the three sets are generated under
the same conditions (SNR, CNR, a and ρc) in order to study the
capabilities of the MLP working as a detector. After, in order to
study the detector robustness, these conditions are changed in the
simulation set. To approximate the NP detector, the MLP output is
compared to a threshold, which is established by the desired Pfa.

MLPs are initialized using the Nguyen-Widrow method [17]
and, in all cases, the training process is repeated ten times with dif-
ferent initial conditions to guarantee that the performance of all the
MLPs are similar in average. Once all the MLPs are trained, the
best MLP in terms of the estimated MSE with the validation set is
selected in order to avoid the problem of local minima.

The architecture of the MLP considered for the experiments is
I/H/O, where:
• I is the number of MLP inputs,
• H is the number of hidden neurons in its hidden layer, and
• O is the number of MLP outputs.

If the scanning radar collects N pulses in a scan and the outputs
of the synchronous detector are applied to the detection scheme,
the observation vectors will be composed of N complex samples.
As the MLPs work with real arithmetic, it will have 2N inputs (N
in phase and N in quadrature components of the N complex (coher-
ent) samples). The number of MLP independent elements (weights)
available to solve the problem is:

W = (I +1) ·H +(H +1) ·O (8)

where the bias of each neuron is considered.

5. DESIGN OF THE EXPERIMENTS AND RESULTS

The performances of the detectors exposed in previous sections are
shown in terms of the Receiver Operating Characteristics (ROC)
curves for given target and interference conditions. These curves
give the estimated Pd as a function of the Pfa under the condi-
tions considered in each study. The ROC curves are shown with
the Pfa axis in a log scale. In all the cases of study, an integration
of two pulses (N = 2) is considered. So, in order to test correctly
the TSKAP detector, patterns composed of three complex samples
(N + (N − 1) = 3) are generated, due to memory requirements of
the linear prediction filter of the TSKAP detector (N−1 = 1 pulse).

5.1 MLP-based detector dimensionality
The a priori probabilities of H0 and H1 hypotheses is supposed to
be the same. Three sets of patterns are generated for each exper-
iment: train, validation and test. Pd and Pfa are estimated using
Montecarlo simulation. The range of Pfa considered for the study
is [10−4,10−1]. The relative error in the estimated values is always
lower than 10%, even in the worst case (Pfa=10−4). The patterns of
all the sets are synthetically generated [5, 13] under the same con-
ditions. Attending to typical values of radar environment [5], the
design parameters for the case of study are the following:
• SNR: 20 dB, for training (TSNR) and simulation (SSNR) steps,

which guarantees good performance for the number of pulses
integrated and the Pfa range selected for our case of study.

• CNR: 30 dB, because the TSKAP requirements (CNR>> 0dB).
• a: 1.2, which is a intermediate value between an Exponential

case (a = 1.0) and a Gaussian one (a = 2.0).
• ρc: 0.9, which is in the typical range [0.6,0.995] [18].
• doppler frequency of the clutter: fc = 0 Hz.
• doppler frequency of the target: fs = 0.5 ·PRF .
• N: 2.

If the TSKAP detector is designed for N = 2, the filter memory
will contain one sample. If we are considering an observation vector
under hypothesis H1 and this sample is generated under hypothesis
H0, its performance will decrease significantly. So, actually, 3 (N +
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Figure 2: MLP-based detectors (6/H/1) performances for
TSNR=SSNR=20dB and an input space of 2(N +N−1) pulses.
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Figure 3: MLP-based detectors (4/H/1) performances for
TSNR=SSNR=20dB and an input space of 2(N) pulses.

N− 1) complex samples are needed to make the linear prediction
filter works in steady stage. For comparison purposes, a MLP with
6 inputs (3 complex samples) must be designed in order to guarantee
that the input space is the same for both detectors. Also, MLPs are
trained and tested for 4 inputs (2 complex samples). Note that in the
last case, the dimension of the input space has been reduced and the
detection problem is different.

The MLP architectures used to generate the MLP-based detec-
tor are 6/H/1 and 4/H/1. The number of MLP outputs (O = 1) is
established according to the problem (binary detection). The num-
ber of hidden neurons (H) is studied in this work. And the number
of MLP inputs (I = 6 and I = 4) is established according to the
criterion exposed above. Fig. 2 and 3 show the ROC curves for
I = 2 · (N + (N − 1)) = 6 and I = 2 ·N = 4 and different number
of hidden neurons, respectively. The study shows the influence of
the MLP size, i.e., the influence of the number of hidden neurons,
which is related to the number of weights. As can be observed
in both figures, if H increases over 30 hidden neurons, the perfor-
mance achieved tends asymptotically to a maximum performance,
so this is the maximum value of H used for the experiments.

MLP-based detector ROC curves for I = 6 (3 pulses) and dif-
ferent number of hidden neurons are presented in fig. 2. As the
MLP size increases, the Pd increases for a given Pfa, although for
20 (W = 161 weights) or more hidden neurons the performance im-
provement is very low, while the complexity continues growing up.
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Figure 4: TSKAP and MLP-based detectors performances for MLP
sizes of 4/10/1 and 6/10/1.

The performance improvement is more important for low values of
Pfa. For Pfa=10−4, the loss in Pd of the 6/20/1 MLP-based de-
tector is approximately of 0,005 comparing with the best structure
(6/30/1). In that way, this structure is proposed as a trade-off be-
tween performance and computational cost, for the range of Pfa’s
considered.

A parallel study is carried out for I = 4 (2 pulses) in fig. 3.
Again, the performance increases as the number of hidden neurons
grows up. As the dimension of the input space is lower, the per-
formance is poorer and the dependence on the network size is less
important.

The comparison of the results presented in fig. 2 and 3 allow
us to conclude that the integration improvement obtained when the
number of pulses of the input space is increased from 2 to 3 is very
important.

5.2 Comparison between TSKAP and MLP-based detectors

A comparison of the performance obtained from the TSKAP de-
tector and the MLP-based detectors of sizes 6/20/1 and 4/20/1
trained with the Levenberg-Marquardt algorithm is shown in fig. 4.
In all the cases, the design and training parameters are equal to the
simulation ones. According to this comparison, two differences can
be observed. The first one is that the TSKAP detector is better than
the 4/20/1 MLP-based one in the case of working with 2 pulses
for almost the whole range of Pfa’s considered. And the second
one is that the 6/20/1 MLP-based detector is always better than
the TSKAP detector. But while in the second case, both detectors
works in the same conditions with the same simulation patterns, in
the first case, the MLP input space is different and the decision is
taken with less information (the integration factor is lower).

Comparing fig. 2 and 4, it can be observed that a 6/05/1
MLP-based detector is enough to outperform the TSKAP one. In
this stage, the selection of the 6/20/1 MLP-based detector is bet-
ter, because a loss of 0,005 approximately in Pd is observed for
Pfa=10−4 with respect to the best MLP-based detector. So, this
detector clearly outperforms the TSKAP for all the Pfa range con-
sidered.

The differences appreciated between the TSKAP and MLP-
based detectors can be explained taking into consideration that
while the design of the TSKAP is suboptimum, the MLP-based de-
tector approximate the optimum discriminant function. If the num-
ber of degrees of freedom (number of weights) is high enough and
the training algorithm is able to converge to the minimum of the er-
ror surfaces avoiding local minima, the approximation error can be
very low and the detector performance can be higher.
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Figure 5: ROC curves for TSKAP detector with DSNR=17,20 and
23 dB and SSNR=17 and 23 dB.
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Figure 6: ROC curves for 6/20/1 MLP-based detector with
TSNR=17,20 and 23 dB and SSNR=17 and 23 dB.

5.3 TSKAP and MLP-based detectors robustness
Once it is demonstrated that the MLP-based detector achieves better
performances than the TSKAP detector, the study of their robust-
ness with respect to target parameters is proposed.

As a first approach, a study of the robustness with respect to
the SNR is carried out. The radar conditions are the same as the
exposed in 5.1. In order to analyze the robustness of the TSKAP
detector with respect to the SNR assuming a DSNR=20 dB, ROC
curves for SSNR=17 and 23 dB are obtained and compared with
those obtained with TSKAP detectors designed for DSNR=17 and
23 dB, respectively (fig. 5). The results show that the TSKAP de-
tector for DSNR=20 dB is very robust with respect to the SSNR.
Note that for a certain SSNR, the ROC curves obtained for different
DSNRs are very similar.

A parallel study is carried out for the 6/20/1 MLP-based detec-
tor. The MLP trained with TSNR=20 dB is simulated for SSNR=17
and 23 dB. The ROC curves are presented in fig. 6. In this figure,
the ROC curves for TSNR=SSNR=17 dB and TSNR=SSNR=23
dB are also plotted. The results show that while SNR depen-
dence is insignificant for SSNR=23 dB, the dependence observed
for SSNR=17 dB is very low.

6. CONCLUSIONS

The influence in MLP-based detectors of the MLP size and their
robustness are studied in order to detect known targets in coherent
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Weibull-distributed clutter and white Gaussian noise. These detec-
tors are able to approximate the NP detector since they are trained
in a supervised way to minimize the MSE. Also, they are compared
to a suboptimum solution for the case of study, the TSKAP detector.

After the study developed, several conclusions can be set. In
the case of working with an input space of N = 2 pulses for the
MLP-based detector, this detector works worse than the TSKAP.
But the MLP-based detector outperforms the TSKAP in case of
working with an input space of N +(N−1) = 3 pulses, i.e., working
with the same available information. In that cases, low complexity
MLP-based detectors can be obtained because a 6/05/1 MLP have
the enough intelligence (weights) to get better performance than the
TSKAP one. The detection capabilities of the MLP-based detectors
increases as the number of hidden neurons is increased up to 20.
For higher MLP sizes, the performance improvement is very low
while the computational cost continues growing up. So, a 6/20/1
MLP-based detector is taken as a trade-off between performance
and complexity.

The TSKAP detector and the MLP-based detector (6/20/1)
considered for the studies are robust with respect to changes in the
SNR of the target.

Finally, because the MLP-based detectors outperform the
TSKAP one and are very robust with respect to target parameters
(SNR), it is a good choice to take them into consideration to de-
tect known targets in coherent Weibull-distributed clutter and white
Gaussian noise.
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