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ABSTRACT

In this article we propose a computationally efficient
method (termed FCOMBI) to combine the strengths of non-
Gaussianity-based Blind Source Separation (BSS) and cross-
correlations-based BSS. This is done by fusing the separa-
tion abilities of two well-known BSS algorithms: EFICA
and WASOBI. Simulations show that our approach is at
least as accurate and often more accurate that other state-
of-the-art approaches which also aim to separate simul-
taneously non-Gaussian and time-correlated components.
However, in terms of computational efficiency and stability,
FCOMBI is the clear winner which makes it specially suit-
able for the analysis of very high-dimensional datasets like
high-density Electroencephalographic (EEG) or Magnetoen-
cephalographic (MEG) recordings.

1. INTRODUCTION

In this article we consider the most common BSS problem
in which the sources are assumed to be independent and the
mixing is assumed to be linear and instantaneous. Such BSS
problem can be solved by recovering independence in the
source estimates through Independent Component Analysis
(ICA). The BSS model can be compactly expressed as:

x(t) =
d

∑
j=1

a js j(t) = As(t) (1)

where A = [a1, ...,ad ] is an unknown mixing matrix, s(t) =

[s1(t), ...,sd(t)]T are the original unobserved sources and

x(t) = [x1(t), ...,xd(t)]
T

the observed linear and instanta-
neous mixtures. The BSS problem consists in estimating a

separating matrix B̂≈A−1 =B such that the mixing process

A can be inverted and the sources s recovered: ŝ = B̂x =
B̂As ≈ s. Different methods to solve the BSS problem usu-
ally differ in (1) the statistics measuring the independence of
the source signals and (2) the estimators of those statistics.
Indeed, the accuracy of the estimator is less important than
the selection of an appropriate independence measure. The
optimal choice for this measure depends upon the underly-
ing model generating the source signals. Two of the most
common choices for measuring independence are:

1. Non-Gaussianity. Maximizing non-Gaussianity of the
estimated sources is a good choice when the origi-
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nal source signals are independent and identically dis-
tributed (i.i.d.) processes with non-Gaussian distribu-
tion. Non-Gaussianity can be measured using marginal
entropy for which several accurate estimators have been
proposed in the BSS framework (e.g. [1, 2]). Two of the
best algorithms in terms of speed and accuracy are Fas-
tICA [1] and EFICA [3].

2. Cross-correlations. This is a simple and effective in-
dependence contrast when the sources are time series
with non-zero autocorrelations for time lags greater than
zero. In this case, the true sources can be identified
by minimizing cross-correlations and maximizing auto-
correlations in the estimated sources. Algorithms in this
group include SOBI/TDSEP [4, 5] and Weights-Adjusted
SOBI (WASOBI [6, 7, 8]).

In real applications, it is common to find mixtures of non-
Gaussian i.i.d. sources with Gaussian non-white sources. In
such scenarios each of the independence contrasts above will
be (at best) able to separate just some of the sources but
never all of them. A compromise solution is to try to opti-
mize a weighted average of both types of contrasts. Several
BSS algorithms have been proposed in this direction, includ-
ing JADET D [9], JCC [10], Thin ICA [11] and the unify-
ing model of [12]. A probably more accurate approach is to
successively use each of the contrasts above to separate the
sub-sets of sources for which they are more suitable. The al-
gorithms EFWS [13], COMBI [13] and MCOMBI [14] im-
plement this idea and effectively combine the strengths of
EFICA and WASOBI. A practical limitation of all these com-
bination approaches is that their computational cost is unaf-
fordable for high-dimensional mixtures like the ones found in
high-density electroencephalography (EEG) and magnetoen-
cephalography (MEG). In this article we propose a new ver-
sion of MCOMBI that overcomes this limitation. Using sim-
ulations, we show that the new version (termed FCOMBI)
achieves a performance similar to that of MCOMBI with just
a small fraction of computational load.

2. MULTIDIMENSIONAL INDEPENDENT

COMPONENTS

Standard BSS assumes that the one-dimensional unknown
sources in Eq. 1 are mutually independent according to the
independency contrast used. A straightforward generaliza-
tion of this principle assumes that not all the d sources
are mutually independent but they form M higher dimen-
sional independent components [15, 16]. Let dl denote
the dimensionality of the lth multidimensional component
that groups together the one-dimensional source signals with
indexes l1, ..., ldl

. Then, the lth multidimensional compo-
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nent is given by Sl = [sl1 , ...,sldl
]†, where l = 1, ...,M and

d1 +d2 + ...+dM = d. Therefore, we can rewrite the sources

data matrix S in Eq. 1 as S = [s1, ...,sd ]
† = Q [S1, ...,SM ]†

where Q is a permutation matrix. Using the notation above
and dropping matrix Q under the permutation indeterminacy
of ICA, we can reformulate Eq. 1 as:

S = BX = [B1X, ...,BMX]† = [S1, ...,SM]† (2)

The goal of multidimensional BSS is to estimate the sub-
matrices {Bl}l=1,...,M each of which is of dimension dl ×
d. Since the sub-components of a multidimensional inde-
pendent component are arbitrarily mixed we can recover
{Bl}l=1,...,M only up to an invertible matrix factor [16].

A multidimensional component according to certain in-
dependency contrast (e.g. non-Gaussianity) might be separa-
ble into one-dimensional components using an alternative in-
dependency measure (e.g. cross-correlations). This suggests
a procedure for combining complementary independency cri-
teria [14]:

1. Try BSS using certain independency criterion.

2. Detect the presence of multidimensional components in
the source signals estimated in step (1).

3. Try BSS using an alternative independency contrast in
each multidimensional component found in step (2).

This is the basic idea underlying FCOMBI which combines
the complementary strengths of the non-Gaussianity crite-
rion of EFICA and the criterion based on cross-correlations
of WASOBI.

3. DETECTION OF MULTIDIMENSIONAL

INDEPENDENT COMPONENTS

A common way of evaluating the accuracy of the separation
produced by any BSS algorithm is the matrix of Interference-
To-Signal Ratios (ISR matrix). Element-wise, the ISR ma-

trix is defined as ISRkl =G2
kl/G

2
kk where G= B̂A. B̂ is the

estimated separating matrix and A is the true mixing matrix.
ISRkl measures the level of residual interference between
the kth and lth estimated components. The total ISR of the

kth estimated source is defined as isrk = ∑d
l=1,l 6=k ISRkl .

EFICA and WASOBI share the rare feature of allowing
the estimation of the obtained ISR matrix through simple
empirical estimate of E[ISR] using the estimated sources ŝ.
This means that EFICA and WASOBI permit us to estimate

ÎSR ≈ E[ISR]. It has been shown that the estimations ÎSR
obtained by WASOBI and EFICA are quite accurate even
when the respective assumptions about the sources are only

partially fulfilled [14]. The information provided by ÎSR is
crucial for detecting the presence of multidimensional com-
ponents within the estimated sources which is the reason for
us to choose EFICA and WASOBI in our combined BSS
method.

If the ISR matrix is known, or if it can be estimated,
we can easily assess the presence of multidimensional inde-
pendent components by grouping together components with
high mutual interference. This is done by defining a sym-
metric distance measure between two estimated components
D(ŝk, ŝl) = Dkl = 1/(ISRkl + ISRlk) ≥ 0 ∀l 6= k. We also
define Dkk = 0 ∀k. Using the distance metric D, we cluster
together the estimated components whose distance from each

other is small. For this task we use agglomerative hierarchi-
cal clustering with single linkage. By single linkage we mean
that the distance between clusters of components is defined
as the distance between the closest pair of components. The
output of this clustering algorithm is a set of i = 1,2, ..,d pos-
sible partition levels of the estimated sources. At each par-
ticular level the method joins together the two clusters from
the previous level which are closest in distance. Therefore,
in level i = 1 each source forms a cluster whereas in level
i = d all the sources belong to the same cluster. For assess-
ing the goodness-of-fit of the i = 2, ...,d − 1 partition levels
we propose using the validity index Ii = Dintra

i /Dinter
i where

Dintra
i and Dinter

i roughly measure, respectively, the average
intra-cluster and inter-cluster distances. They are defined, for
1 < i < d, as follows:

Dintra
i =

∑d−i+1

j=1,Card(Γi, j)>1
Card(Γi, j) (Card(Γi, j)−1)/2

∑d−i+1

j=1,Card(Γi, j)>1
∑k∈Γi, j ,l∈Γi, j

ISRkl

(3)

Dinter
i =

∑d−i+1
j=1 Card(Γi, j)(d−Card(Γi, j))

∑d−i+1
j=1 ∑k∈Γi, j ,l /∈Γi, j

ISRkl

(4)

where Γi, j is the set of indexes of the sources belonging

to the jth cluster at the ith partition level. We also define
I1 = 1/ISRmax where ISRmax is the maximum entry in the
ISR matrix. We set Id = 10. Finally we choose the best
cluster partition to be that one corresponding to the maxi-
mum of all local maxima of the cluster validity index I. By
setting Id = 10 we consider that the separation failed com-
pletely (there is just one d-dimensional cluster) if Dinter

i <
10 · Dintra

i ∀i = 2, ...,d − 1. The definition I1 = 1/ISRmax

means that the estimated sources will be considered to be
1-dimensional (perfect separation) if ISRmax < mini>2(1/Ii).
Therefore, since Id = 10, we require the maximum ISR be-
tween two 1-dimensional components to be in any case be-
low -10 dB. In Fig. 1 we can see the results of clustering
the ISR estimated by WASOBI and EFICA for a simulated
dataset.

In order to ease the explanation of FCOMBI in the next
section we will use the following Matlab notation to refer
to the hierarchical clustering algorithm described in this sec-
tion: [i,I] = hclus(ISR), where the input parameter
is the estimated ISR matrix, the first output parameter is the
selected partition level and the second output parameter is a
1× (d− i+ 1) cell array such that I{k} is a vector contain-

ing the indexes of the sources belonging to the kth cluster.

4. PROPOSED ALGORITHM: FCOMBI

FCOMBI is described below using Matlab notation:

function [B] = FCOMBI(X,ARorder)

[d, L] = size(X);

[B, ISRwa] = WASOBI(X,ARorder);

[iwa, Iwa] = hclus(ISRwa);

if iwa == 1, return; end

for i = 1:(d-iwa+1),

if length(Iwa{i})==1, continue; end

index = Iwa{i}; di = length(index);
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[Bef,ISRef] = EFICA(B(index,:)*X);

[ief, Ief] = hclus(ISRef);

if (ief < di) || ...

(min(sum(ISR(index,index),2)) > ...

min(sum(ISRef,2))),

B(index,:) = Bef*B(index,:);

end

end

FCOMBI starts by applying WASOBI on the input data.
The reason for using WASOBI first instead of EFICA is
that the former is considerably faster than the latter for
high dimensional mixtures, which is the target application
of FCOMBI. Subsequently, EFICA is applied on each mul-
tidimensional component of sources found in the output of
WASOBI. Finally, we decide whether EFICA was able to im-
prove the separation of the sources within the cluster or not.
In our implementation of the algorithm we include a third
step (not shown in the Matlab code above) that consists on
running WASOBI again on the cluster of unresolved compo-
nents in the output of EFICA (if such a cluster exists). This
last step is helpful only in the rare cases when, in the first run
of WASOBI, we were not able to detect the correct clusters.
If EFICA was able to separate some non-Gaussian sources
we expect the accuracy of WASOBI to improve by applying
it only to the cluster of Gaussian components that was not
correctly separated by EFICA. WASOBI requires the user to
specify the order of the AR model that best fits the unob-
served sources. However, the performance is not critically
dependent on this parameter and it is enough to select an or-
der high enough to model appropriately the source signals.

5. SIMULATIONS

In this section we use simulations to compare FCOMBI
to other state-of-the-art approaches that also aim to com-
bine non-Gaussianity and cross-correlations to measure in-
dependence of the source signals, namely EFWS, COMBI,
MCOMBI, JADET D, ThinICA, and JCC. The implementa-
tions of these algorithms were obtained from their respective
author’s public web-pages or provided directly to us by the
authors (JCC). The only exception was JADET D which we
implemented using the publicly available implementations
of JADE [2] and TDSEP. Unfortunately, the implementation
of the unifying model of [12] kindly provided by his author
did not allow the separation of AR sources of order greater
than 1. Due to the lack of time to implement the necessary
changes in the code we decided not to include it in the com-
parison.

Both JADET D and JCC are based on joint diagonalization
of quadricovariance eigen matrices and time-delayed corre-
lation matrices. In both algorithms we selected the time lags
of the cross-correlations to be 0,1, ...,K where K denotes the
maximum AR order of the source signals (see Table 1). In
the contrast function of ThinICA we included second or-
der cross-correlations at lags 0,1, ...,K, third order statis-
tics at lag 0 (skewness) and fourth order cumulants at lags
0,1, ...,K. For the algorithms that made use of WASOBI
(EFWS, COMBI, MCOMBI and FCOMBI) we set the or-
der of the AR models employed to be equal to K. A Matlab
implementation of FCOMBI as well as the Matlab scripts
necessary for repeating the figures shown in this paper can
be downloaded from the web-page of the first author of this

article 1.
The source signals were generated by feeding Auto-

Regressive (AR) filters with random i.i.d. samples with dif-
ferent distributions. The characteristics of the sources are
summarized in Table 1. We can see that the simulated dataset
consists of d = 4 ·K + G sources. The first K sources have a
Gaussian distribution and therefore cannot be separated by
means of the non-Gaussianity ICA contrast. By contrary
sources K +1 to 4 ·K are all are easily separated by exploiting
their non-Gaussianity. It can also be observed that for a fixed
value of m, the sources with indexes n ·K +m for n = 1,2,3,4
have the same spectrum and therefore cannot be separated
by means of SOBI, WASOBI or other algorithms exploiting
different spectra of the source signals. Sources 4 ·K + 1 to
4 ·K +G are Gaussian i.i.d. which means that they cannot be
separated by any of the tested algorithms. The multidimen-
sional structure of the simulated dataset for K = 5, G = 0 can
be observed in Fig. 1.

Source # distribution AR filter coefficients

1 Gaussian [1,ρ ]
2 Gaussian [1,0,ρ ]
...

...
...

K Gaussian [1,0, · · · ,0,ρ ]
K + 1 BPSK [1,ρ ]
...

...
...

2 ·K BPSK [1,0, · · · ,0,ρ ]
2 ·K + 1 Laplacian [1,ρ ]
...

...
...

3 ·K Laplacian [1,0, · · · ,0,ρ ]
3 ·K + 1 Uniform [1,ρ ]
...

...
...

4 ·K Uniform [1,0, · · · ,0,ρ ]
4 ·K + 1 Gaussian [1]
...

...
...

4 ·K + G Gaussian [1]

Table 1: Characteristics of the source signals

To evaluate the overall separation performance we used
the average of the ISR obtained for the individual sources,

i.e.: ISRavg = 1
d ∑d

k=1 isrk. In Fig. 2(a) we show the aver-
age ISR obtained for different number of data samples of the
sources. The computation times for different sample sizes
are in Fig. 3(a). The accuracy of FCOMBI for values of ρ
between 0.2 and 0.4 is lower than the accuracy of MCOMBI.
The reason is that both WASOBI and EFICA were able
to produce a rather accurate separation of the sources, and
therefore FCOMBI chose WASOBI to separate them even
if EFICA would have been even more accurate. COMBI
and EFWS performance decreases with increasing number
of data samples which is due to the fact that those three algo-
rithms are not able to separate the Gaussian sources (sources
1-5). For small sample sizes, the sample distribution of those
sources is not exactly Gaussian which explains the better
performance. From Fig. 3(b) we can observe that, for low-
dimensional problems, JADETDT D is the fastest algorithm
and is still able to separate all the sources (although not as

1http://www.cs.tut.fi/̃ gomezher/
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Figure 4: Number of identifiable components that were esti-
mated with SIR < 1 dB versus the number of Gaussian i.i.d.
(unidentifiable) components (parameter G in Table 1). The
settings of the simulation were ρ = 0.6, K = 5, N = 5000.

accurately as MCOMBI and FCOMBI). Therefore, we can
conclude that, for low-dimensional mixtures, FCOMBI and
MCOMBI offer the best trade-off between computational
complexity and accuracy but they are closely followed by
JADETD.

The major advantage of FCOMBI is the possibility of us-
ing it with very high dimensional datasets. This can be eas-
ily checked from Fig. 3(b) where we show the computation
times for different dimensionalities of the mixture. The com-
putational cost of JADET D grows exponentially with increas-
ing dimensionality which makes it completely unsuitable for
analysis of high-dimensional datasets. FCOMBI performs
much faster than any other algorithm and is among the most
accurate (accuracy results for different values of K are not
shown for lack of space). This makes FCOMBI the best
choice for the analysis of high-dimensional mixtures.

Finally, we tested the robustness of the algorithm when
we keep constant the number of data samples and we increase
the number of unresolvable Gaussian i.i.d. components in the
mixture, i.e. when we increase the value of parameter G. The
robustness was assessed by counting the number of identifi-
able components (sources 1 to 4 ·K) that obtained an ISR
of less than 1 dB. The average results for 100 Monte-Carlo
repetitions of the sources are shown in Fig. 4. FCOMBI,
MCOMBI and ThinICA are clearly more stable than JCC
and JADET D.

6. CONCLUSIONS

We proposed a BSS algorithm (FCOMBI) that simultane-
ously separates non-Gaussian and time-correlated sources.
FCOMBI is almost as accurate as the closely related al-
gorithm MCOMBI and more accurate than JADET D, JCC
and ThinICA. However, due to its low computational cost,
FCOMBI is the only realistic choice for the analysis of high
dimensional mixtures like the ones found in high-density
EEG and MEG.
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Herrero, and E. Doron, “A hybrid technique for blind
separation of non-Gaussian and time-correlated sources
using a multicomponent approach,” Submitted to IEEE
Trans. Neural Networks, 2007.

[15] L. De Lathauwer, D. Callaerts, B. De Moor, and J. Van-
dewalle, “Fetal electrocardiogram extraction by source
subspace separation,” in Proc. IEEE Signal Process-
ing workshop on higher-order statistics, Girona, Spain,
June 12–14, 1995, pp. 134–138.

[16] J.-F. Cardoso, “Multidimensional independent compo-
nent analysis,” in Proc. ICASSP’98, Seattle, WA, 1998.

©2007 EURASIP 1734

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



source index

s
o
u
rc

e
 i
n
d
e
x

1 2 3 4 5

1

2

3

4

5

[1 p]

[1 0 p]

[1 0 0 0 0 p]

[1 0 0 0 p]

[1 0 0 p]

source index

s
o

u
rc

e
 i
n

d
e

x

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Gaussian cluster
(unseparable by EFICA)
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Figure 2: Average SIR when varying the number of data samples N and when varying the value of the coefficient of the AR
filters ρ . The values shown are the average results for 100 Monte-Carlo repetitions of the sources.
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Figure 3: Average computational time when varying the number of observed data samples N and the number of sources
d = 4 ·K. Note the different scale of the y-axes. The values shown are the average results for 100 Monte-Carlo repetitions of
the sources.
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